Quantum entangled fractional topology and curvatures
The Chern number is a defining characteristic of a non-trivial topological system and is derived from another fundamental property termed the Berry curvature. Here, the authors theoretically propose the concept of fractional topology with a fractional Chern number using interacting spins on a Poinca...
Enregistré dans:
Auteurs principaux: | Joel Hutchinson, Karyn Le Hur |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a523b758c3b64d618ab3cb64bd9144d3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Publisher Correction: Quantum entangled fractional topology and curvatures
par: Joel Hutchinson, et autres
Publié: (2021) -
Hard magnet topological semimetals in XPt3 compounds with the harmony of Berry curvature
par: Anastasios Markou, et autres
Publié: (2021) -
Massively-multiplexed generation of Bell-type entanglement using a quantum memory
par: Michał Lipka, et autres
Publié: (2021) -
Entanglement growth in diffusive systems with large spin
par: Tibor Rakovszky, et autres
Publié: (2021) -
Unraveling the effects of multiscale network entanglement on empirical systems
par: Arsham Ghavasieh, et autres
Publié: (2021)