Intraoral image generation by progressive growing of generative adversarial network and evaluation of generated image quality by dentists
Abstract Dentists need experience with clinical cases to practice specialized skills. However, the need to protect patient's private information limits their ability to utilize intraoral images obtained from clinical cases. In this study, since generating realistic images could make it possible...
Enregistré dans:
Auteurs principaux: | Kazuma Kokomoto, Rena Okawa, Kazuhiko Nakano, Kazunori Nozaki |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a52644fad59b4613a6d976757d759ab5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
par: Mingyu Kim, et autres
Publié: (2021) -
Author Correction: Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations
par: Mingyu Kim, et autres
Publié: (2021) -
DisasterGAN: Generative Adversarial Networks for Remote Sensing Disaster Image Generation
par: Xue Rui, et autres
Publié: (2021) -
Low-Light Image Enhancement Based on Generative Adversarial Network
par: Nandhini Abirami R., et autres
Publié: (2021) -
Image and Graph Restoration Dependent on Generative Adversarial Network Algorithm
par: Yuanhao Cao
Publié: (2021)