Faber Polynomial Coefficient Bounds for m-Fold Symmetric Analytic and Bi-univalent Functions Involving q-Calculus

In our present investigation, by applying q-calculus operator theory, we define some new subclasses of m-fold symmetric analytic and bi-univalent functions in the open unit disk U=z∈ℂ:z<1 and use the Faber polynomial expansion to find upper bounds of amk+1 and initial coefficient bounds for am+1...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zeya Jia, Shahid Khan, Nazar Khan, Bilal Khan, Muhammad Asif
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/a52813c830334160a6fd5a4ac23332fd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In our present investigation, by applying q-calculus operator theory, we define some new subclasses of m-fold symmetric analytic and bi-univalent functions in the open unit disk U=z∈ℂ:z<1 and use the Faber polynomial expansion to find upper bounds of amk+1 and initial coefficient bounds for am+1 and a2m+1 as well as Fekete-Szego inequalities for the functions belonging to newly defined subclasses. Also, we highlight some new and known corollaries of our main results.