The Adjunction Inequality for Weyl-Harmonic Maps
In this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal su...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a530c4d1712b485f9c3a465e988b77e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality |
---|