SU(2) hadrons on a quantum computer via a variational approach
Quantum simulations of lattice gauge theories are in principle scalable, but their extension to dynamically coupled matter has proven difficult. In this work, the authors use a variational quantum eigensolver to simulate a non-Abelian LGT including the effects of both gauge fields and dynamical ferm...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a532d95f2ce64ac890d1370d1e0d5f38 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Quantum simulations of lattice gauge theories are in principle scalable, but their extension to dynamically coupled matter has proven difficult. In this work, the authors use a variational quantum eigensolver to simulate a non-Abelian LGT including the effects of both gauge fields and dynamical fermions. |
---|