Unsupervised Regression Model of Geodesic Flow Kernel Based on Dynamic Independent Component Analysis and Dynamic Principal Component Analysis
It is difficult to accurately measure parameters by using the traditional soft sensor algorithm when the working condition of industrial process is changed. Therefore, a transfer learning strategy is introduced based on geodesic flow kernel to solve this problem. At the same time, the method is opti...
Guardado en:
Autores principales: | LAI Yanbo, YAN Gaowei, CHENG Lan, CHEN Zehua |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Editorial Office of Journal of Shanghai Jiao Tong University
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a55168d826a44c0ab572a2137dbea08a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Assessment of Seasonal and Spatial Variations of Coastal Water Quality Using Multivariate Statistical Techniques
por: Mohamad Alkhalidi, et al.
Publicado: (2021) -
Fault detection of industrial process based on ensemble kernel entropy component analysis algorithm
por: Jinyu GUO, et al.
Publicado: (2021) -
A Principal Component Analysis-Boosted Dynamic Gaussian Mixture Clustering Model for Ignition Factors of Brazil’s Rainforests
por: Maofa Wang, et al.
Publicado: (2021) -
Dynamic Pressure Test and Analysis of Marine Ballasted Centrifugal Pump under Rapid Changing Conditions
por: Zhipeng Zhu, et al.
Publicado: (2021) -
Cultural management as a tourism competitiveness factor. A principal component analysis (PCA) for Colombia
por: Corzo-Arévalo,Daniel, et al.
Publicado: (2021)