Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells

The performance of perovskite solar cells can be limited by light absorption loss in organic charge extraction layers, through which sun light must propagate before reaching the perovskite. Here, the authors demonstrate that efficient energy transfer to the perovskite layer from a thin organic layer...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hannah J. Eggimann, Jay B. Patel, Michael B. Johnston, Laura M. Herz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/a5575e97f4b2410db647197a07d4e18f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a5575e97f4b2410db647197a07d4e18f
record_format dspace
spelling oai:doaj.org-article:a5575e97f4b2410db647197a07d4e18f2021-12-02T14:42:32ZEfficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells10.1038/s41467-020-19268-w2041-1723https://doaj.org/article/a5575e97f4b2410db647197a07d4e18f2020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19268-whttps://doaj.org/toc/2041-1723The performance of perovskite solar cells can be limited by light absorption loss in organic charge extraction layers, through which sun light must propagate before reaching the perovskite. Here, the authors demonstrate that efficient energy transfer to the perovskite layer from a thin organic layer is able to eliminate this parasitic loss.Hannah J. EggimannJay B. PatelMichael B. JohnstonLaura M. HerzNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Hannah J. Eggimann
Jay B. Patel
Michael B. Johnston
Laura M. Herz
Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
description The performance of perovskite solar cells can be limited by light absorption loss in organic charge extraction layers, through which sun light must propagate before reaching the perovskite. Here, the authors demonstrate that efficient energy transfer to the perovskite layer from a thin organic layer is able to eliminate this parasitic loss.
format article
author Hannah J. Eggimann
Jay B. Patel
Michael B. Johnston
Laura M. Herz
author_facet Hannah J. Eggimann
Jay B. Patel
Michael B. Johnston
Laura M. Herz
author_sort Hannah J. Eggimann
title Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
title_short Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
title_full Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
title_fullStr Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
title_full_unstemmed Efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
title_sort efficient energy transfer mitigates parasitic light absorption in molecular charge-extraction layers for perovskite solar cells
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/a5575e97f4b2410db647197a07d4e18f
work_keys_str_mv AT hannahjeggimann efficientenergytransfermitigatesparasiticlightabsorptioninmolecularchargeextractionlayersforperovskitesolarcells
AT jaybpatel efficientenergytransfermitigatesparasiticlightabsorptioninmolecularchargeextractionlayersforperovskitesolarcells
AT michaelbjohnston efficientenergytransfermitigatesparasiticlightabsorptioninmolecularchargeextractionlayersforperovskitesolarcells
AT lauramherz efficientenergytransfermitigatesparasiticlightabsorptioninmolecularchargeextractionlayersforperovskitesolarcells
_version_ 1718389650168479744