Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz–Sobolev spaces

Abstract We investigate the multiplicity of solutions for problems involving the fractional N-Laplacian. We obtain three theorems depending on the source terms in which the nonlinearities cross some eigenvalues. We obtain these results by direct computations with the eigenvalues and the correspondin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Q-Heung Choi, Tacksun Jung
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/a57fee1a5fc94855afa1b644c03618d6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We investigate the multiplicity of solutions for problems involving the fractional N-Laplacian. We obtain three theorems depending on the source terms in which the nonlinearities cross some eigenvalues. We obtain these results by direct computations with the eigenvalues and the corresponding eigenfunctions for the fractional N-Laplacian eigenvalue problem in the fractional Orlicz–Sobolev spaces, the contraction mapping principle on the fractional Orlicz–Sobolev spaces and Leray–Schauder degree theory.