Fractional N-Laplacian boundary value problems with jumping nonlinearities in the fractional Orlicz–Sobolev spaces
Abstract We investigate the multiplicity of solutions for problems involving the fractional N-Laplacian. We obtain three theorems depending on the source terms in which the nonlinearities cross some eigenvalues. We obtain these results by direct computations with the eigenvalues and the correspondin...
Guardado en:
Autores principales: | Q-Heung Choi, Tacksun Jung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a57fee1a5fc94855afa1b644c03618d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Compact Sobolev-Slobodeckij embeddings and positive solutions to fractional Laplacian equations
por: Han Qi
Publicado: (2021) -
Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian
por: Yunting Li, et al.
Publicado: (2021) -
Lyapunov-type inequality for higher order left and right fractional p-Laplacian problems
por: Cabada,Alberto, et al.
Publicado: (2021) -
Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction
por: Wang Jun
Publicado: (2021) -
On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional Differential Equations
por: Mohamed I. Abbas, et al.
Publicado: (2021)