Multi-Modal Deep Learning for Weeds Detection in Wheat Field Based on RGB-D Images
Single-modal images carry limited information for features representation, and RGB images fail to detect grass weeds in wheat fields because of their similarity to wheat in shape. We propose a framework based on multi-modal information fusion for accurate detection of weeds in wheat fields in a natu...
Guardado en:
Autores principales: | Ke Xu, Yan Zhu, Weixing Cao, Xiaoping Jiang, Zhijian Jiang, Shuailong Li, Jun Ni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a58375e506aa4e719dd6e8865b9706ef |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Model-Based Estimate of Regional Wheat Yield Gaps and Water Use Efficiency in Main Winter Wheat Production Regions of China
por: Zunfu Lv, et al.
Publicado: (2017) -
Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
por: Jiajia Wu, et al.
Publicado: (2021) -
Deep Neural Networks to Detect Weeds from Crops in Agricultural Environments in Real-Time: A Review
por: Ildar Rakhmatuiln, et al.
Publicado: (2021) -
Production of dsRNA sequences in the host plant is not sufficient to initiate gene silencing in the colonizing oomycete pathogen Phytophthora parasitica.
por: Meixiang Zhang, et al.
Publicado: (2011) -
Quantifying inter-regional payments for watershed services on the basis of green ecological spillover value in the Yellow River Basin, China
por: Yingjie Feng, et al.
Publicado: (2021)