SAMLDroid: A Static Taint Analysis and Machine Learning Combined High-Accuracy Method for Identifying Android Apps with Location Privacy Leakage Risks
Insecure applications (apps) are increasingly used to steal users’ location information for illegal purposes, which has aroused great concern in recent years. Although the existing methods, i.e., static and dynamic taint analysis, have shown great merit for identifying such apps, which mainly rely o...
Guardado en:
Autores principales: | Guangwu Hu, Bin Zhang, Xi Xiao, Weizhe Zhang, Long Liao, Ying Zhou, Xia Yan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a59ad402148c4998bb7a63e93287ea21 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
por: Wei Wang, et al.
Publicado: (2018) -
Location privacy protection scheme for LBS users based ondifferential privacy
por: Naiwen YU, et al.
Publicado: (2021) -
The Uptake and Deconjugation of Androstenone Sulfate in the Adipose Tissue of the Boar
por: Christine Bone, et al.
Publicado: (2021) -
Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
por: Jaehyeong Lee, et al.
Publicado: (2021) -
Hybrid-Based Analysis Impact on Ransomware Detection for Android Systems
por: Rana Almohaini, et al.
Publicado: (2021)