Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode
Because of the broken time-translation symmetry, in periodically driven vibrational systems fluctuations of different vibration components have different intensities. Fluctuations of one of the components are often squeezed, whereas fluctuations of the other component, which is shifted in phase by π...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5a725a1efb04c44ba8f7ce9b85a9eda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a5a725a1efb04c44ba8f7ce9b85a9eda |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a5a725a1efb04c44ba8f7ce9b85a9eda2021-12-02T12:22:34ZSpectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode10.1103/PhysRevX.10.0210662160-3308https://doaj.org/article/a5a725a1efb04c44ba8f7ce9b85a9eda2020-06-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.021066http://doi.org/10.1103/PhysRevX.10.021066https://doaj.org/toc/2160-3308Because of the broken time-translation symmetry, in periodically driven vibrational systems fluctuations of different vibration components have different intensities. Fluctuations of one of the components are often squeezed, whereas fluctuations of the other component, which is shifted in phase by π/2, are increased. Squeezing is a multifaceted phenomenon; it attracts much attention from the perspective of high-precision measurements. Here we demonstrate a new and hitherto unappreciated side of squeezing: its direct manifestation in the spectra of driven vibrational systems. With a weakly damped nanomechanical resonator, we study the spectrum of thermal fluctuations of a resonantly driven nonlinear mode. In the attained sideband-resolved regime, we show that the asymmetry of the spectrum directly characterizes the squeezing. This opens a way to deduce squeezing of thermal fluctuations in strongly underdamped resonators, for which a direct determination by a standard homodyne measurement is impeded by frequency fluctuations. The experimental and theoretical results are in excellent agreement. We further extend the theory to also describe the spectral manifestation of squeezing of quantum fluctuations.J. S. HuberG. RastelliM. J. SeitnerJ. KölblW. BelzigM. I. DykmanE. M. WeigAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 2, p 021066 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 J. S. Huber G. Rastelli M. J. Seitner J. Kölbl W. Belzig M. I. Dykman E. M. Weig Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode |
description |
Because of the broken time-translation symmetry, in periodically driven vibrational systems fluctuations of different vibration components have different intensities. Fluctuations of one of the components are often squeezed, whereas fluctuations of the other component, which is shifted in phase by π/2, are increased. Squeezing is a multifaceted phenomenon; it attracts much attention from the perspective of high-precision measurements. Here we demonstrate a new and hitherto unappreciated side of squeezing: its direct manifestation in the spectra of driven vibrational systems. With a weakly damped nanomechanical resonator, we study the spectrum of thermal fluctuations of a resonantly driven nonlinear mode. In the attained sideband-resolved regime, we show that the asymmetry of the spectrum directly characterizes the squeezing. This opens a way to deduce squeezing of thermal fluctuations in strongly underdamped resonators, for which a direct determination by a standard homodyne measurement is impeded by frequency fluctuations. The experimental and theoretical results are in excellent agreement. We further extend the theory to also describe the spectral manifestation of squeezing of quantum fluctuations. |
format |
article |
author |
J. S. Huber G. Rastelli M. J. Seitner J. Kölbl W. Belzig M. I. Dykman E. M. Weig |
author_facet |
J. S. Huber G. Rastelli M. J. Seitner J. Kölbl W. Belzig M. I. Dykman E. M. Weig |
author_sort |
J. S. Huber |
title |
Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode |
title_short |
Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode |
title_full |
Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode |
title_fullStr |
Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode |
title_full_unstemmed |
Spectral Evidence of Squeezing of a Weakly Damped Driven Nanomechanical Mode |
title_sort |
spectral evidence of squeezing of a weakly damped driven nanomechanical mode |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/a5a725a1efb04c44ba8f7ce9b85a9eda |
work_keys_str_mv |
AT jshuber spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode AT grastelli spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode AT mjseitner spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode AT jkolbl spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode AT wbelzig spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode AT midykman spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode AT emweig spectralevidenceofsqueezingofaweaklydampeddrivennanomechanicalmode |
_version_ |
1718394470889684992 |