Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations

For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. As an application of the spectral theorem, we prove a reducibility result.

Guardado en:
Detalles Bibliográficos
Autores principales: Chu Jifeng, Liao Fang-Fang, Siegmund Stefan, Xia Yonghui, Zhu Hailong
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/a5ab003efe584088a77b1e4dc99cdf08
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a5ab003efe584088a77b1e4dc99cdf08
record_format dspace
spelling oai:doaj.org-article:a5ab003efe584088a77b1e4dc99cdf082021-12-05T14:10:40ZNonuniform dichotomy spectrum and reducibility for nonautonomous difference equations2191-94962191-950X10.1515/anona-2020-0198https://doaj.org/article/a5ab003efe584088a77b1e4dc99cdf082021-07-01T00:00:00Zhttps://doi.org/10.1515/anona-2020-0198https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XFor nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. As an application of the spectral theorem, we prove a reducibility result.Chu JifengLiao Fang-FangSiegmund StefanXia YonghuiZhu HailongDe Gruyterarticledichotomy spectrumnonuniform exponential dichotomyreducibility37d2537b55AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 369-384 (2021)
institution DOAJ
collection DOAJ
language EN
topic dichotomy spectrum
nonuniform exponential dichotomy
reducibility
37d25
37b55
Analysis
QA299.6-433
spellingShingle dichotomy spectrum
nonuniform exponential dichotomy
reducibility
37d25
37b55
Analysis
QA299.6-433
Chu Jifeng
Liao Fang-Fang
Siegmund Stefan
Xia Yonghui
Zhu Hailong
Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
description For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. As an application of the spectral theorem, we prove a reducibility result.
format article
author Chu Jifeng
Liao Fang-Fang
Siegmund Stefan
Xia Yonghui
Zhu Hailong
author_facet Chu Jifeng
Liao Fang-Fang
Siegmund Stefan
Xia Yonghui
Zhu Hailong
author_sort Chu Jifeng
title Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
title_short Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
title_full Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
title_fullStr Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
title_full_unstemmed Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
title_sort nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/a5ab003efe584088a77b1e4dc99cdf08
work_keys_str_mv AT chujifeng nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations
AT liaofangfang nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations
AT siegmundstefan nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations
AT xiayonghui nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations
AT zhuhailong nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations
_version_ 1718371857875337216