Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations
For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. As an application of the spectral theorem, we prove a reducibility result.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5ab003efe584088a77b1e4dc99cdf08 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a5ab003efe584088a77b1e4dc99cdf08 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a5ab003efe584088a77b1e4dc99cdf082021-12-05T14:10:40ZNonuniform dichotomy spectrum and reducibility for nonautonomous difference equations2191-94962191-950X10.1515/anona-2020-0198https://doaj.org/article/a5ab003efe584088a77b1e4dc99cdf082021-07-01T00:00:00Zhttps://doi.org/10.1515/anona-2020-0198https://doaj.org/toc/2191-9496https://doaj.org/toc/2191-950XFor nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. As an application of the spectral theorem, we prove a reducibility result.Chu JifengLiao Fang-FangSiegmund StefanXia YonghuiZhu HailongDe Gruyterarticledichotomy spectrumnonuniform exponential dichotomyreducibility37d2537b55AnalysisQA299.6-433ENAdvances in Nonlinear Analysis, Vol 11, Iss 1, Pp 369-384 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
dichotomy spectrum nonuniform exponential dichotomy reducibility 37d25 37b55 Analysis QA299.6-433 |
spellingShingle |
dichotomy spectrum nonuniform exponential dichotomy reducibility 37d25 37b55 Analysis QA299.6-433 Chu Jifeng Liao Fang-Fang Siegmund Stefan Xia Yonghui Zhu Hailong Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
description |
For nonautonomous linear difference equations, we introduce the notion of the so-called nonuniform dichotomy spectrum and prove a spectral theorem. As an application of the spectral theorem, we prove a reducibility result. |
format |
article |
author |
Chu Jifeng Liao Fang-Fang Siegmund Stefan Xia Yonghui Zhu Hailong |
author_facet |
Chu Jifeng Liao Fang-Fang Siegmund Stefan Xia Yonghui Zhu Hailong |
author_sort |
Chu Jifeng |
title |
Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
title_short |
Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
title_full |
Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
title_fullStr |
Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
title_full_unstemmed |
Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
title_sort |
nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/a5ab003efe584088a77b1e4dc99cdf08 |
work_keys_str_mv |
AT chujifeng nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations AT liaofangfang nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations AT siegmundstefan nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations AT xiayonghui nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations AT zhuhailong nonuniformdichotomyspectrumandreducibilityfornonautonomousdifferenceequations |
_version_ |
1718371857875337216 |