Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China

Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the potential to deal with large-scale forest height inversion. However, the inversion is influenced by strong temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest canopy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yu Mao, Opelele Omeno Michel, Ying Yu, Wenyi Fan, Ao Sui, Zhihui Liu, Guoming Wu
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a5b7d89a64d84675bb13e33d3ee28be1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a5b7d89a64d84675bb13e33d3ee28be1
record_format dspace
spelling oai:doaj.org-article:a5b7d89a64d84675bb13e33d3ee28be12021-11-11T18:53:31ZRetrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China10.3390/rs132143062072-4292https://doaj.org/article/a5b7d89a64d84675bb13e33d3ee28be12021-10-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4306https://doaj.org/toc/2072-4292Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the potential to deal with large-scale forest height inversion. However, the inversion is influenced by strong temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest canopy induces phase errors, while the smaller vertical wavenumber (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula>) enhances the sensitivity of the inversion to temporal decorrelation, which limits the efficiency in forest height inversion. This research is based on the random volume over ground (RVoG) model and follows the assumptions of the three-stage inversion method, to quantify the impact of repeat-pass spaceborne PolInSAR temporal decorrelation on the relative error of retrieval height, and develop a semi-empirical improved inversion model, using ground data to eliminate the interference of coherence and phase error caused by temporal decorrelation. Forest height inversion for temperate forest in northern China was conducted using repeat-pass spaceborne L-band ALOS2 PALSAR data, and was further verified using ground measurement data. The correction of temporal decorrelation using the improved model provided robust inversion for mixed conifer-broad forest height retrieval as it addressed the over-sensitivity to temporal decorrelation resulting from the inappropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula> value. The method performed height inversion using interferometric data with temporal baselines ranging from 14 to 70 days and vertical wavenumbers ranging from 0.015 to 0.021 rad/m. The R<sup>2</sup> and RMSE reached 0.8126 and 2.3125 m, respectively.Yu MaoOpelele Omeno MichelYing YuWenyi FanAo SuiZhihui LiuGuoming WuMDPI AGarticleforest heightsynthetic aperture radar (SAR)interferometryrandom volume over ground (RVoG) modelthree-stage inversion methodScienceQENRemote Sensing, Vol 13, Iss 4306, p 4306 (2021)
institution DOAJ
collection DOAJ
language EN
topic forest height
synthetic aperture radar (SAR)
interferometry
random volume over ground (RVoG) model
three-stage inversion method
Science
Q
spellingShingle forest height
synthetic aperture radar (SAR)
interferometry
random volume over ground (RVoG) model
three-stage inversion method
Science
Q
Yu Mao
Opelele Omeno Michel
Ying Yu
Wenyi Fan
Ao Sui
Zhihui Liu
Guoming Wu
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
description Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the potential to deal with large-scale forest height inversion. However, the inversion is influenced by strong temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest canopy induces phase errors, while the smaller vertical wavenumber (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula>) enhances the sensitivity of the inversion to temporal decorrelation, which limits the efficiency in forest height inversion. This research is based on the random volume over ground (RVoG) model and follows the assumptions of the three-stage inversion method, to quantify the impact of repeat-pass spaceborne PolInSAR temporal decorrelation on the relative error of retrieval height, and develop a semi-empirical improved inversion model, using ground data to eliminate the interference of coherence and phase error caused by temporal decorrelation. Forest height inversion for temperate forest in northern China was conducted using repeat-pass spaceborne L-band ALOS2 PALSAR data, and was further verified using ground measurement data. The correction of temporal decorrelation using the improved model provided robust inversion for mixed conifer-broad forest height retrieval as it addressed the over-sensitivity to temporal decorrelation resulting from the inappropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula> value. The method performed height inversion using interferometric data with temporal baselines ranging from 14 to 70 days and vertical wavenumbers ranging from 0.015 to 0.021 rad/m. The R<sup>2</sup> and RMSE reached 0.8126 and 2.3125 m, respectively.
format article
author Yu Mao
Opelele Omeno Michel
Ying Yu
Wenyi Fan
Ao Sui
Zhihui Liu
Guoming Wu
author_facet Yu Mao
Opelele Omeno Michel
Ying Yu
Wenyi Fan
Ao Sui
Zhihui Liu
Guoming Wu
author_sort Yu Mao
title Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
title_short Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
title_full Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
title_fullStr Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
title_full_unstemmed Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
title_sort retrieval of boreal forest heights using an improved random volume over ground (rvog) model based on repeat-pass spaceborne polarimetric sar interferometry: the case study of saihanba, china
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/a5b7d89a64d84675bb13e33d3ee28be1
work_keys_str_mv AT yumao retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
AT opeleleomenomichel retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
AT yingyu retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
AT wenyifan retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
AT aosui retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
AT zhihuiliu retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
AT guomingwu retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina
_version_ 1718431716935204864