Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China
Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the potential to deal with large-scale forest height inversion. However, the inversion is influenced by strong temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest canopy...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5b7d89a64d84675bb13e33d3ee28be1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a5b7d89a64d84675bb13e33d3ee28be1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a5b7d89a64d84675bb13e33d3ee28be12021-11-11T18:53:31ZRetrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China10.3390/rs132143062072-4292https://doaj.org/article/a5b7d89a64d84675bb13e33d3ee28be12021-10-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/21/4306https://doaj.org/toc/2072-4292Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the potential to deal with large-scale forest height inversion. However, the inversion is influenced by strong temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest canopy induces phase errors, while the smaller vertical wavenumber (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula>) enhances the sensitivity of the inversion to temporal decorrelation, which limits the efficiency in forest height inversion. This research is based on the random volume over ground (RVoG) model and follows the assumptions of the three-stage inversion method, to quantify the impact of repeat-pass spaceborne PolInSAR temporal decorrelation on the relative error of retrieval height, and develop a semi-empirical improved inversion model, using ground data to eliminate the interference of coherence and phase error caused by temporal decorrelation. Forest height inversion for temperate forest in northern China was conducted using repeat-pass spaceborne L-band ALOS2 PALSAR data, and was further verified using ground measurement data. The correction of temporal decorrelation using the improved model provided robust inversion for mixed conifer-broad forest height retrieval as it addressed the over-sensitivity to temporal decorrelation resulting from the inappropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula> value. The method performed height inversion using interferometric data with temporal baselines ranging from 14 to 70 days and vertical wavenumbers ranging from 0.015 to 0.021 rad/m. The R<sup>2</sup> and RMSE reached 0.8126 and 2.3125 m, respectively.Yu MaoOpelele Omeno MichelYing YuWenyi FanAo SuiZhihui LiuGuoming WuMDPI AGarticleforest heightsynthetic aperture radar (SAR)interferometryrandom volume over ground (RVoG) modelthree-stage inversion methodScienceQENRemote Sensing, Vol 13, Iss 4306, p 4306 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
forest height synthetic aperture radar (SAR) interferometry random volume over ground (RVoG) model three-stage inversion method Science Q |
spellingShingle |
forest height synthetic aperture radar (SAR) interferometry random volume over ground (RVoG) model three-stage inversion method Science Q Yu Mao Opelele Omeno Michel Ying Yu Wenyi Fan Ao Sui Zhihui Liu Guoming Wu Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China |
description |
Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the potential to deal with large-scale forest height inversion. However, the inversion is influenced by strong temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest canopy induces phase errors, while the smaller vertical wavenumber (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula>) enhances the sensitivity of the inversion to temporal decorrelation, which limits the efficiency in forest height inversion. This research is based on the random volume over ground (RVoG) model and follows the assumptions of the three-stage inversion method, to quantify the impact of repeat-pass spaceborne PolInSAR temporal decorrelation on the relative error of retrieval height, and develop a semi-empirical improved inversion model, using ground data to eliminate the interference of coherence and phase error caused by temporal decorrelation. Forest height inversion for temperate forest in northern China was conducted using repeat-pass spaceborne L-band ALOS2 PALSAR data, and was further verified using ground measurement data. The correction of temporal decorrelation using the improved model provided robust inversion for mixed conifer-broad forest height retrieval as it addressed the over-sensitivity to temporal decorrelation resulting from the inappropriate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>k</mi><mi>z</mi></msub></mrow></semantics></math></inline-formula> value. The method performed height inversion using interferometric data with temporal baselines ranging from 14 to 70 days and vertical wavenumbers ranging from 0.015 to 0.021 rad/m. The R<sup>2</sup> and RMSE reached 0.8126 and 2.3125 m, respectively. |
format |
article |
author |
Yu Mao Opelele Omeno Michel Ying Yu Wenyi Fan Ao Sui Zhihui Liu Guoming Wu |
author_facet |
Yu Mao Opelele Omeno Michel Ying Yu Wenyi Fan Ao Sui Zhihui Liu Guoming Wu |
author_sort |
Yu Mao |
title |
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China |
title_short |
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China |
title_full |
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China |
title_fullStr |
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China |
title_full_unstemmed |
Retrieval of Boreal Forest Heights Using an Improved Random Volume over Ground (RVoG) Model Based on Repeat-Pass Spaceborne Polarimetric SAR Interferometry: The Case Study of Saihanba, China |
title_sort |
retrieval of boreal forest heights using an improved random volume over ground (rvog) model based on repeat-pass spaceborne polarimetric sar interferometry: the case study of saihanba, china |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/a5b7d89a64d84675bb13e33d3ee28be1 |
work_keys_str_mv |
AT yumao retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina AT opeleleomenomichel retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina AT yingyu retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina AT wenyifan retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina AT aosui retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina AT zhihuiliu retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina AT guomingwu retrievalofborealforestheightsusinganimprovedrandomvolumeovergroundrvogmodelbasedonrepeatpassspacebornepolarimetricsarinterferometrythecasestudyofsaihanbachina |
_version_ |
1718431716935204864 |