Deep learning to ternary hash codes by continuation
Abstract Recently, ithas been observed that {0,±1}‐ternary codes, which are simply generated from deep features by hard thresholding, tend to outperform {−1,1}‐binary codes in image retrieval. To obtain better ternary codes, the authors for the first time propose to jointly learn the features with t...
Enregistré dans:
Auteurs principaux: | Mingrui Chen, Weiyu Li, Weizhi Lu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a5c841e2503147e9bb25a3892e2fa9f6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A fast learning approach for autonomous navigation using a deep reinforcement learning method
par: Muhammad Mudassir Ejaz, et autres
Publié: (2021) -
Histopathological Image Retrieval Based on Asymmetric Residual Hash and DNA Coding
par: Shuli Cheng, et autres
Publié: (2019) -
Multi‐view facial action unit detection via deep feature enhancement
par: Chuangao Tang, et autres
Publié: (2021) -
A deep neural network based method for magnetic anomaly detection
par: Yizhen Wang, et autres
Publié: (2022) -
Erratum to “Process Model for Continuous Testing of Web Accessibility”
par: Milton Campoverde-Molina, et autres
Publié: (2021)