Autonomous Learning Interactive Features for Hyperspectral Remotely Sensed Data
In the field of remote sensing, most of the feature indexes are obtained based on expert knowledge or domain analysis. With the rapid development of machine learning and artificial intelligence, this method is time-consuming and lacks flexibility, and the indexes obtained cannot be applied to all ar...
Guardado en:
Autores principales: | Ling Dai, Guangyun Zhang, Jinqi Gong, Rongting Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5ce9725cad344579a28a8de22c05398 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hyperspectral Remote Sensing Image Feature Representation Method Based on CAE-H with Nuclear Norm Constraint
por: Xiaodong Yu, et al.
Publicado: (2021) -
Deep Spectral Spatial Inverted Residual Network for Hyperspectral Image Classification
por: Tianyu Zhang, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Two-Branch Spectral–Spatial-Feature Attention Network
por: Hanjie Wu, et al.
Publicado: (2021) -
A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition
por: Huiyun Zhang, et al.
Publicado: (2021) -
Reliable Identification of Oolong Tea Species: Nondestructive Testing Classification Based on Fluorescence Hyperspectral Technology and Machine Learning
por: Yan Hu, et al.
Publicado: (2021)