Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations
Abstract Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the deriv...
Guardado en:
Autores principales: | Ali Ercan, M. Levent Kavvas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5d69007b2b24e6790fc09266b51f514 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-attenuation of extreme events in Navier–Stokes turbulence
por: Dhawal Buaria, et al.
Publicado: (2020) -
Generalized Navier–Stokes equations and soft hairy horizons in fluid/gravity correspondence
por: A.J. Ferreira–Martins, et al.
Publicado: (2021) -
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces
por: Jlali Lotfi
Publicado: (2021) -
A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions
por: Xiaoxia Dai, et al.
Publicado: (2021)