Prediction of gait trajectories based on the Long Short Term Memory neural networks.

The forecasting of lower limb trajectories can improve the operation of assistive devices and minimise the risk of tripping and balance loss. The aim of this work was to examine four Long Short Term Memory (LSTM) neural network architectures (Vanilla, Stacked, Bidirectional and Autoencoders) in pred...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Abdelrahman Zaroug, Alessandro Garofolini, Daniel T H Lai, Kurt Mudie, Rezaul Begg
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/a5de0cf3941c41b585df56e04a3f2f87
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!