Machine learning-based real-time object locator/evaluator for cryo-EM data collection
Yonekura et al. present yoneoLocr, a machine learning-based real-time object locator for rapidly and precisely locating carbon holes and crystals for facilitating automated SPA or cryo-EX data collection.
Guardado en:
Autores principales: | Koji Yonekura, Saori Maki-Yonekura, Hisashi Naitow, Tasuku Hamaguchi, Kiyofumi Takaba |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5f0126681cf42feb3942c53abf4ed2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams
por: Koji Kato, et al.
Publicado: (2021) -
Post-transcriptional regulator Hfq binds catalase HPII: crystal structure of the complex.
por: Koji Yonekura, et al.
Publicado: (2013) -
Locating Objects in Warehouses Using BLE Beacons & Machine Learning
por: Hrushikesh Zadgaonkar, et al.
Publicado: (2021) -
Structure of the far-red light utilizing photosystem I of Acaryochloris marina
por: Tasuku Hamaguchi, et al.
Publicado: (2021) -
Location and Classification of Moving Fruits in Real Time with a Single Color Camera
por: Reyes,José F, et al.
Publicado: (2009)