Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
In recent years, the global pervasiveness of smartphones has prompted the development of millions of free and commercially available applications. These applications allow users to perform various activities, such as communicating, gaming, and completing financial and educational tasks. These common...
Guardado en:
Autor principal: | Abdulaziz Alzubaidi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a5f76719b79e42b6b86a5a85e9983e60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
por: Jaehyeong Lee, et al.
Publicado: (2021) -
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
por: Minki Kim, et al.
Publicado: (2021) -
DroidEnsemble: Detecting Android Malicious Applications With Ensemble of String and Structural Static Features
por: Wei Wang, et al.
Publicado: (2018) -
LSGAN-AT: enhancing malware detector robustness against adversarial examples
por: Jianhua Wang, et al.
Publicado: (2021)