De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499.

Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chris D Curtin, Anthony R Borneman, Paul J Chambers, Isak S Pretorius
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a6002f1d2138424d99d70a12baed1425
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs) at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs). Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits.