Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning
Abstract The ability to forecast seizures minutes to hours in advance of an event has been verified using invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices over long durations in an ambulatory setting. In this study we developed a seizure forecasting s...
Guardado en:
Autores principales: | Mona Nasseri, Tal Pal Attia, Boney Joseph, Nicholas M. Gregg, Ewan S. Nurse, Pedro F. Viana, Gregory Worrell, Matthias Dümpelmann, Mark P. Richardson, Dean R. Freestone, Benjamin H. Brinkmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a602d4f7464843138012ca3c210ca25c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research
por: Benjamin W. Nelson, et al.
Publicado: (2020) -
Sleep classification from wrist-worn accelerometer data using random forests
por: Kalaivani Sundararajan, et al.
Publicado: (2021) -
Development of digital measures for nighttime scratch and sleep using wrist-worn wearable devices
por: Nikhil Mahadevan, et al.
Publicado: (2021) -
Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device
por: Nikhil Mahadevan, et al.
Publicado: (2020) -
Number of daily measurements needed to estimate habitual step count levels using wrist-worn trackers and smartphones in 212,048 adults
por: Jiali Yao, et al.
Publicado: (2021)