Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation
Abstract Alfalfa is the most widely cultivated forage legume, with approximately 30 million hectares planted worldwide. Genetic improvements in alfalfa have been highly successful in developing cultivars with exceptional winter hardiness and disease resistance traits. However, genetic improvements h...
Guardado en:
Autores principales: | Zhou Tang, Atit Parajuli, Chunpeng James Chen, Yang Hu, Samuel Revolinski, Cesar Augusto Medina, Sen Lin, Zhiwu Zhang, Long-Xi Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a60bd3bc401647559ea34f685d583f84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Combination of Aerial, Satellite, and UAV Photogrammetry for Quantifying Rock Glacier Kinematics in the Dry Andes of Chile (30°S) Since the 1950s
por: Sebastián Vivero, et al.
Publicado: (2021) -
Estimating Ground Elevation and Vegetation Characteristics in Coastal Salt Marshes Using UAV-Based LiDAR and Digital Aerial Photogrammetry
por: Daniele Pinton, et al.
Publicado: (2021) -
A python code for automatic construction of Fischer plots using proxy data
por: Daming Yang, et al.
Publicado: (2021) -
Fully automatic liver segmentation combining multi-dimensional graph cut with shape information in 3D CT images
por: Xuesong Lu, et al.
Publicado: (2018)