Rapid profiling of drug-resistant bacteria using DNA-binding dyes and a nanopore-based DNA sequencer
Abstract Spread of drug-resistant bacteria is a serious problem worldwide. We thus designed a new sequence-based protocol that can quickly identify bacterial compositions of clinical samples and their drug-resistance profiles simultaneously. Here we utilized propidium monoazide (PMA) that prohibits...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6218a78c05244d4b18b99ef1f80ac2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Spread of drug-resistant bacteria is a serious problem worldwide. We thus designed a new sequence-based protocol that can quickly identify bacterial compositions of clinical samples and their drug-resistance profiles simultaneously. Here we utilized propidium monoazide (PMA) that prohibits DNA amplifications from dead bacteria, and subjected the original and antibiotics-treated samples to 16S rRNA metagenome sequencing. We tested our protocol on bacterial mixtures, and observed that sequencing reads derived from drug-resistant bacteria were significantly increased compared with those from drug-sensitive bacteria when samples were treated by antibiotics. Our protocol is scalable and will be useful for quickly profiling drug-resistant bacteria. |
---|