Actor–Critic Reinforcement Learning and Application in Developing Computer-Vision-Based Interface Tracking
This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process. A reinforcement learning (RL) agent successfully tracks an interface between two liquids, which is often a critical variable to track in many chemical, petrochemical, m...
Guardado en:
Autores principales: | Oguzhan Dogru, Kirubakaran Velswamy, Biao Huang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a624e2d1afb747039710f977d50ab005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Online Tracking-by-Detection With Kalman Filter
por: Siyuan Chen, et al.
Publicado: (2021) -
Development of Real-Time Control System based on Deep Learning for UAVs Object Detection, Tracking and Safe-Landing
por: Mohamed Rabah, et al.
Publicado: (2021) -
Semantic Point Cloud-Based Adaptive Multiple Object Detection and Tracking for Autonomous Vehicles
por: Soyeong Kim, et al.
Publicado: (2021) -
Full-Scale Field Experimental Investigation on the Intended Irregularity of CWR Track in Vertical Plane
por: Włodzimierz Andrzej Bednarek
Publicado: (2021) -
Dynamic Track Fusion Algorithm Based on Information Quality Selection
por: Zhen Xu, Liu Fang, Xia Yuping
Publicado: (2021)