Actor–Critic Reinforcement Learning and Application in Developing Computer-Vision-Based Interface Tracking
This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process. A reinforcement learning (RL) agent successfully tracks an interface between two liquids, which is often a critical variable to track in many chemical, petrochemical, m...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a624e2d1afb747039710f977d50ab005 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!