Adversarial Machine Learning on Social Network: A Survey
In recent years, machine learning technology has made great improvements in social networks applications such as social network recommendation systems, sentiment analysis, and text generation. However, it cannot be ignored that machine learning algorithms are vulnerable to adversarial examples, that...
Guardado en:
Autores principales: | Sensen Guo, Xiaoyu Li, Zhiying Mu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6251993374241b295171fc2e807fc5a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021) -
Multi-Targeted Adversarial Example in Evasion Attack on Deep Neural Network
por: Hyun Kwon, et al.
Publicado: (2018) -
Deepfake-Image Anti-Forensics with Adversarial Examples Attacks
por: Li Fan, et al.
Publicado: (2021)