Algorithm for classification of technical state of fuel regulator in the space of operating process parameters

This article solves the problem of constructing an algorithm for classifying the technical state of the fuel regulator of a turboshaft engine of a helicopter in the parameter space of the regulator's working process and obtaining estimates of the state of the investigated product. In the introd...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Игорь Валериевич Оганян, Сергей Валериевич Епифанов
Formato: article
Lenguaje:EN
RU
UK
Publicado: National Aerospace University «Kharkiv Aviation Institute» 2021
Materias:
Acceso en línea:https://doaj.org/article/a62eb59c83cb48fa99bf2f0569a78f06
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a62eb59c83cb48fa99bf2f0569a78f06
record_format dspace
spelling oai:doaj.org-article:a62eb59c83cb48fa99bf2f0569a78f062021-11-09T07:53:09ZAlgorithm for classification of technical state of fuel regulator in the space of operating process parameters1727-73372663-221710.32620/aktt.2021.4sup1.22https://doaj.org/article/a62eb59c83cb48fa99bf2f0569a78f062021-08-01T00:00:00Zhttp://nti.khai.edu/ojs/index.php/aktt/article/view/1467https://doaj.org/toc/1727-7337https://doaj.org/toc/2663-2217This article solves the problem of constructing an algorithm for classifying the technical state of the fuel regulator of a turboshaft engine of a helicopter in the parameter space of the regulator's working process and obtaining estimates of the state of the investigated product. In the introduction to this work, the main methods of classifying the technical state are considered, and a brief justification for the choice of the method for classifying the state of the product in the space of measured parameters used to construct the algorithm is considered in this article, is given. The criteria for the presence of a malfunction in the investigated controller are determined and the basic requirements for the classification algorithm are formed. To simplify the problem being solved, many assumptions about the diagnosed defects were made. The article provides descriptions of all components of the classification algorithm. A brief description of the mathematical model of the fuel regulator is given. The operating mode of the regulator for analysis is selected, and the list of state parameters required for diagnostics and the list of diagnostic parameters of the working process is given. The technique of linearization of the mathematical model of the controller and the technique of constructing the matrix of influence coefficients, which is the basic element of the entire algorithm, is described. The probabilistic characteristic of the credibility of the classification algorithm is determined, and the derivation of the formula for its calculation, based on the Bayes theorem, is also given. To assess the quality of the classification by the diagnostic algorithm, a test sample of workflow parameters was formed. The methodology for constructing a test sample is described and its size is determined. After the product condition estimates are obtained according to the test sample data by the classification algorithm, such a quality criterion as the recall is calculated. As a result of assessing the recall, a table was formed with the values of this criterion for each class. The recall of the algorithm on average for all defects was 89 %. The conclusions indicate possible methods for improving the quality of diagnosis by the algorithm.Игорь Валериевич ОганянСергей Валериевич ЕпифановNational Aerospace University «Kharkiv Aviation Institute»articleтопливный регулятордиагностикаклассификациядефектматематическая модельпараметры состояниядиагностические признакивероятностные характеристики достоверностикачество классификацииполнота классификацииMotor vehicles. Aeronautics. AstronauticsTL1-4050ENRUUKАвіаційно-космічна техніка та технологія, Vol 0, Iss 4sup1, Pp 158-169 (2021)
institution DOAJ
collection DOAJ
language EN
RU
UK
topic топливный регулятор
диагностика
классификация
дефект
математическая модель
параметры состояния
диагностические признаки
вероятностные характеристики достоверности
качество классификации
полнота классификации
Motor vehicles. Aeronautics. Astronautics
TL1-4050
spellingShingle топливный регулятор
диагностика
классификация
дефект
математическая модель
параметры состояния
диагностические признаки
вероятностные характеристики достоверности
качество классификации
полнота классификации
Motor vehicles. Aeronautics. Astronautics
TL1-4050
Игорь Валериевич Оганян
Сергей Валериевич Епифанов
Algorithm for classification of technical state of fuel regulator in the space of operating process parameters
description This article solves the problem of constructing an algorithm for classifying the technical state of the fuel regulator of a turboshaft engine of a helicopter in the parameter space of the regulator's working process and obtaining estimates of the state of the investigated product. In the introduction to this work, the main methods of classifying the technical state are considered, and a brief justification for the choice of the method for classifying the state of the product in the space of measured parameters used to construct the algorithm is considered in this article, is given. The criteria for the presence of a malfunction in the investigated controller are determined and the basic requirements for the classification algorithm are formed. To simplify the problem being solved, many assumptions about the diagnosed defects were made. The article provides descriptions of all components of the classification algorithm. A brief description of the mathematical model of the fuel regulator is given. The operating mode of the regulator for analysis is selected, and the list of state parameters required for diagnostics and the list of diagnostic parameters of the working process is given. The technique of linearization of the mathematical model of the controller and the technique of constructing the matrix of influence coefficients, which is the basic element of the entire algorithm, is described. The probabilistic characteristic of the credibility of the classification algorithm is determined, and the derivation of the formula for its calculation, based on the Bayes theorem, is also given. To assess the quality of the classification by the diagnostic algorithm, a test sample of workflow parameters was formed. The methodology for constructing a test sample is described and its size is determined. After the product condition estimates are obtained according to the test sample data by the classification algorithm, such a quality criterion as the recall is calculated. As a result of assessing the recall, a table was formed with the values of this criterion for each class. The recall of the algorithm on average for all defects was 89 %. The conclusions indicate possible methods for improving the quality of diagnosis by the algorithm.
format article
author Игорь Валериевич Оганян
Сергей Валериевич Епифанов
author_facet Игорь Валериевич Оганян
Сергей Валериевич Епифанов
author_sort Игорь Валериевич Оганян
title Algorithm for classification of technical state of fuel regulator in the space of operating process parameters
title_short Algorithm for classification of technical state of fuel regulator in the space of operating process parameters
title_full Algorithm for classification of technical state of fuel regulator in the space of operating process parameters
title_fullStr Algorithm for classification of technical state of fuel regulator in the space of operating process parameters
title_full_unstemmed Algorithm for classification of technical state of fuel regulator in the space of operating process parameters
title_sort algorithm for classification of technical state of fuel regulator in the space of operating process parameters
publisher National Aerospace University «Kharkiv Aviation Institute»
publishDate 2021
url https://doaj.org/article/a62eb59c83cb48fa99bf2f0569a78f06
work_keys_str_mv AT igorʹvalerievičoganân algorithmforclassificationoftechnicalstateoffuelregulatorinthespaceofoperatingprocessparameters
AT sergejvalerievičepifanov algorithmforclassificationoftechnicalstateoffuelregulatorinthespaceofoperatingprocessparameters
_version_ 1718441229169983488