Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>

ABSTRACT Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dmitry A. Rodionov, Irina A. Rodionova, Vladimir A. Rodionov, Aleksandr A. Arzamasov, Ke Zhang, Gabriel M. Rubinstein, Tania N. N. Tanwee, Ryan G. Bing, James R. Crosby, Intawat Nookaew, Mirko Basen, Steven D. Brown, Charlotte M. Wilson, Dawn M. Klingeman, Farris L. Poole, Ying Zhang, Robert M. Kelly, Michael W. W. Adams
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://doaj.org/article/a6422628448b4bf5b9fbebf42000f112
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a6422628448b4bf5b9fbebf42000f112
record_format dspace
spelling oai:doaj.org-article:a6422628448b4bf5b9fbebf42000f1122021-12-02T18:21:27ZTranscriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>10.1128/mSystems.01345-202379-5077https://doaj.org/article/a6422628448b4bf5b9fbebf42000f1122021-06-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.01345-20https://doaj.org/toc/2379-5077ABSTRACT Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.Dmitry A. RodionovIrina A. RodionovaVladimir A. RodionovAleksandr A. ArzamasovKe ZhangGabriel M. RubinsteinTania N. N. TanweeRyan G. BingJames R. CrosbyIntawat NookaewMirko BasenSteven D. BrownCharlotte M. WilsonDawn M. KlingemanFarris L. PooleYing ZhangRobert M. KellyMichael W. W. AdamsAmerican Society for MicrobiologyarticleCaldicellulosiruptor besciilignocellulose degradationcarbohydrate metabolismtranscriptional regulationCaldicellulosiruptorcarbohydrate utilizationMicrobiologyQR1-502ENmSystems, Vol 6, Iss 3 (2021)
institution DOAJ
collection DOAJ
language EN
topic Caldicellulosiruptor bescii
lignocellulose degradation
carbohydrate metabolism
transcriptional regulation
Caldicellulosiruptor
carbohydrate utilization
Microbiology
QR1-502
spellingShingle Caldicellulosiruptor bescii
lignocellulose degradation
carbohydrate metabolism
transcriptional regulation
Caldicellulosiruptor
carbohydrate utilization
Microbiology
QR1-502
Dmitry A. Rodionov
Irina A. Rodionova
Vladimir A. Rodionov
Aleksandr A. Arzamasov
Ke Zhang
Gabriel M. Rubinstein
Tania N. N. Tanwee
Ryan G. Bing
James R. Crosby
Intawat Nookaew
Mirko Basen
Steven D. Brown
Charlotte M. Wilson
Dawn M. Klingeman
Farris L. Poole
Ying Zhang
Robert M. Kelly
Michael W. W. Adams
Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>
description ABSTRACT Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
format article
author Dmitry A. Rodionov
Irina A. Rodionova
Vladimir A. Rodionov
Aleksandr A. Arzamasov
Ke Zhang
Gabriel M. Rubinstein
Tania N. N. Tanwee
Ryan G. Bing
James R. Crosby
Intawat Nookaew
Mirko Basen
Steven D. Brown
Charlotte M. Wilson
Dawn M. Klingeman
Farris L. Poole
Ying Zhang
Robert M. Kelly
Michael W. W. Adams
author_facet Dmitry A. Rodionov
Irina A. Rodionova
Vladimir A. Rodionov
Aleksandr A. Arzamasov
Ke Zhang
Gabriel M. Rubinstein
Tania N. N. Tanwee
Ryan G. Bing
James R. Crosby
Intawat Nookaew
Mirko Basen
Steven D. Brown
Charlotte M. Wilson
Dawn M. Klingeman
Farris L. Poole
Ying Zhang
Robert M. Kelly
Michael W. W. Adams
author_sort Dmitry A. Rodionov
title Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>
title_short Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>
title_full Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>
title_fullStr Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>
title_full_unstemmed Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <italic toggle="yes">Caldicellulosiruptor bescii</italic>
title_sort transcriptional regulation of plant biomass degradation and carbohydrate utilization genes in the extreme thermophile <italic toggle="yes">caldicellulosiruptor bescii</italic>
publisher American Society for Microbiology
publishDate 2021
url https://doaj.org/article/a6422628448b4bf5b9fbebf42000f112
work_keys_str_mv AT dmitryarodionov transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT irinaarodionova transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT vladimirarodionov transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT aleksandraarzamasov transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT kezhang transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT gabrielmrubinstein transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT tanianntanwee transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT ryangbing transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT jamesrcrosby transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT intawatnookaew transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT mirkobasen transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT stevendbrown transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT charlottemwilson transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT dawnmklingeman transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT farrislpoole transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT yingzhang transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT robertmkelly transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
AT michaelwwadams transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophileitalictoggleyescaldicellulosiruptorbesciiitalic
_version_ 1718378174227677184