Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals
The quality of human language translation has been thought to be unattainable by computer translation systems. Here the authors present CUBBITT, a deep learning system that outperforms professional human translators in retaining text meaning in English-to-Czech news translation, and validate the sys...
Guardado en:
Autores principales: | Martin Popel, Marketa Tomkova, Jakub Tomek, Łukasz Kaiser, Jakob Uszkoreit, Ondřej Bojar, Zdeněk Žabokrtský |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a659b74d79c2411697adc8096cdc92e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-source Transformer for Automatic Post-Editing of Machine Translation Output
por: Amirhossein Tebbifakhr, et al.
Publicado: (2019) -
Some Weaknesses of Modern Machine Translation (by Example of Google Translate Web Service)
por: I. S. Samokhin, et al.
Publicado: (2018) -
Recent Advances in Dialogue Machine Translation
por: Siyou Liu, et al.
Publicado: (2021) -
A MOOC on Approaches to Machine Translation
por: Marta Ruiz Costa-jussà, et al.
Publicado: (2015) -
Transformer neural network for protein-specific de novo drug generation as a machine translation problem
por: Daria Grechishnikova
Publicado: (2021)