Multi-Task Learning with Task-Specific Feature Filtering in Low-Data Condition
Multi-task learning is a computationally efficient method to solve multiple tasks in one multi-task model, instead of multiple single-task models. MTL is expected to learn both diverse and shareable visual features from multiple datasets. However, MTL performances usually do not outperform single-ta...
Guardado en:
Autores principales: | Sang-woo Lee, Ryong Lee, Min-seok Seo, Jong-chan Park, Hyeon-cheol Noh, Jin-gi Ju, Rae-young Jang, Gun-woo Lee, Myung-seok Choi, Dong-geol Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a66ea26763d343aab655f260efa48ecc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database
por: Alexander Tack, et al.
Publicado: (2021) -
Don’t Overweight Weights: Evaluation of Weighting Strategies for Multi-Task Bioactivity Classification Models
por: Lina Humbeck, et al.
Publicado: (2021) -
No reduction of between-task interference in a dual-task with a repeating sequence of SOAs
por: Eva Röttger, et al.
Publicado: (2021) -
Analysis of Time-on-Task, Behavior Experiences, and Performance in Two Online Courses with Different Authentic Learning Tasks
por: Sanghoon Park
Publicado: (2017) -
An Overview of Deep Learning Approaches in Chest Radiograph
por: Shazia Anis, et al.
Publicado: (2020)