Deviation from the matching law reflects an optimal strategy involving learning over multiple timescales
Recent experience can only provide limited information to guide decisions in a volatile environment. Here, the authors report that the choices made by a monkey in a dynamic foraging task can be better explained by a model that combines learning on both fast and slow timescales.
Guardado en:
Autores principales: | Kiyohito Iigaya, Yashar Ahmadian, Leo P. Sugrue, Greg S. Corrado, Yonatan Loewenstein, William T. Newsome, Stefano Fusi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a688406c53864b749f691bf87f05f1cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An empirical investigation of deviations from the Beer–Lambert law in optical estimation of lactate
por: M. Mamouei, et al.
Publicado: (2021) -
Deviations from Taylor’s frozen hypothesis and scaling laws in inhomogeneous jet flows
por: Sukesh Roy, et al.
Publicado: (2021) -
Molecular probes reveal deviations from Amontons’ law in multi-asperity frictional contacts
por: B. Weber, et al.
Publicado: (2018) -
"We regret to inform you that you did not match": Reflections on how to improve the match experience
por: Tyee Kenneth Fellows, et al.
Publicado: (2020) -
Advancing behavioural genomics by considering timescale
por: Clare C. Rittschof, et al.
Publicado: (2018)