Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6994645c7684614b0dfec100ac6d249 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a6994645c7684614b0dfec100ac6d249 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a6994645c7684614b0dfec100ac6d2492021-12-02T10:48:11ZDeep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images10.1038/s41467-020-20030-52041-1723https://doaj.org/article/a6994645c7684614b0dfec100ac6d2492020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20030-5https://doaj.org/toc/2041-1723Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors.Javad NoorbakhshSaman FarahmandAli Foroughi pourSandeep NamburiDennis CaruanaDavid RimmMohammad Soltanieh-haKourosh ZarringhalamJeffrey H. ChuangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Javad Noorbakhsh Saman Farahmand Ali Foroughi pour Sandeep Namburi Dennis Caruana David Rimm Mohammad Soltanieh-ha Kourosh Zarringhalam Jeffrey H. Chuang Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
description |
Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors. |
format |
article |
author |
Javad Noorbakhsh Saman Farahmand Ali Foroughi pour Sandeep Namburi Dennis Caruana David Rimm Mohammad Soltanieh-ha Kourosh Zarringhalam Jeffrey H. Chuang |
author_facet |
Javad Noorbakhsh Saman Farahmand Ali Foroughi pour Sandeep Namburi Dennis Caruana David Rimm Mohammad Soltanieh-ha Kourosh Zarringhalam Jeffrey H. Chuang |
author_sort |
Javad Noorbakhsh |
title |
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
title_short |
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
title_full |
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
title_fullStr |
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
title_full_unstemmed |
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
title_sort |
deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/a6994645c7684614b0dfec100ac6d249 |
work_keys_str_mv |
AT javadnoorbakhsh deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT samanfarahmand deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT aliforoughipour deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT sandeepnamburi deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT denniscaruana deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT davidrimm deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT mohammadsoltaniehha deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT kouroshzarringhalam deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages AT jeffreyhchuang deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages |
_version_ |
1718396666916110336 |