Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images

Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors.

Guardado en:
Detalles Bibliográficos
Autores principales: Javad Noorbakhsh, Saman Farahmand, Ali Foroughi pour, Sandeep Namburi, Dennis Caruana, David Rimm, Mohammad Soltanieh-ha, Kourosh Zarringhalam, Jeffrey H. Chuang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/a6994645c7684614b0dfec100ac6d249
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a6994645c7684614b0dfec100ac6d249
record_format dspace
spelling oai:doaj.org-article:a6994645c7684614b0dfec100ac6d2492021-12-02T10:48:11ZDeep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images10.1038/s41467-020-20030-52041-1723https://doaj.org/article/a6994645c7684614b0dfec100ac6d2492020-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-20030-5https://doaj.org/toc/2041-1723Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors.Javad NoorbakhshSaman FarahmandAli Foroughi pourSandeep NamburiDennis CaruanaDavid RimmMohammad Soltanieh-haKourosh ZarringhalamJeffrey H. ChuangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Javad Noorbakhsh
Saman Farahmand
Ali Foroughi pour
Sandeep Namburi
Dennis Caruana
David Rimm
Mohammad Soltanieh-ha
Kourosh Zarringhalam
Jeffrey H. Chuang
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
description Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors.
format article
author Javad Noorbakhsh
Saman Farahmand
Ali Foroughi pour
Sandeep Namburi
Dennis Caruana
David Rimm
Mohammad Soltanieh-ha
Kourosh Zarringhalam
Jeffrey H. Chuang
author_facet Javad Noorbakhsh
Saman Farahmand
Ali Foroughi pour
Sandeep Namburi
Dennis Caruana
David Rimm
Mohammad Soltanieh-ha
Kourosh Zarringhalam
Jeffrey H. Chuang
author_sort Javad Noorbakhsh
title Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
title_short Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
title_full Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
title_fullStr Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
title_full_unstemmed Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
title_sort deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/a6994645c7684614b0dfec100ac6d249
work_keys_str_mv AT javadnoorbakhsh deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT samanfarahmand deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT aliforoughipour deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT sandeepnamburi deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT denniscaruana deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT davidrimm deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT mohammadsoltaniehha deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT kouroshzarringhalam deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
AT jeffreyhchuang deeplearningbasedcrossclassificationsrevealconservedspatialbehaviorswithintumorhistologicalimages
_version_ 1718396666916110336