Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
Histopathological images are a rich but incompletely explored data type for studying cancer. Here the authors show that convolutional neural networks can be systematically applied across cancer types, enabling comparisons to reveal shared spatial behaviors.
Guardado en:
Autores principales: | Javad Noorbakhsh, Saman Farahmand, Ali Foroughi pour, Sandeep Namburi, Dennis Caruana, David Rimm, Mohammad Soltanieh-ha, Kourosh Zarringhalam, Jeffrey H. Chuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6994645c7684614b0dfec100ac6d249 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust phenotype prediction from gene expression data using differential shrinkage of co-regulated genes
por: Kourosh Zarringhalam, et al.
Publicado: (2018) -
Deep learning classification of lung cancer histology using CT images
por: Tafadzwa L. Chaunzwa, et al.
Publicado: (2021) -
The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
por: Juliana Pereira Lopes Gonçalves, et al.
Publicado: (2021) -
A neural network for glomerulus classification based on histological images of kidney biopsy
por: Giacomo Donato Cascarano, et al.
Publicado: (2021) -
Evolutionary conservation of within-family biodiversity patterns
por: Paola Laiolo, et al.
Publicado: (2020)