Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis
Mateusz Wierzbicki,1 Ewa Sawosz,1 Marta Grodzik,1 Anna Hotowy,1 Marta Prasek,1 Slawomir Jaworski,1 Filip Sawosz,2 André Chwalibog2 1Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Veterinary Clinical and Animal Sciences, University of Cope...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a69deeaaeb704702936894752e5325dd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a69deeaaeb704702936894752e5325dd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a69deeaaeb704702936894752e5325dd2021-12-02T00:22:13ZCarbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis1176-91141178-2013https://doaj.org/article/a69deeaaeb704702936894752e5325dd2013-09-01T00:00:00Zhttp://www.dovepress.com/carbon-nanoparticles-downregulate-expression-of-basic-fibroblast-growt-a14280https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Mateusz Wierzbicki,1 Ewa Sawosz,1 Marta Grodzik,1 Anna Hotowy,1 Marta Prasek,1 Slawomir Jaworski,1 Filip Sawosz,2 André Chwalibog2 1Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark Abstract: Carbon nanoparticles, with their high biocompatibility and low toxicity, have recently been considered for biomedical applications, including antiangiogenic therapy. Critical to normal development and tumor formation, angiogenesis is the process of forming capillary blood vessels from preexisting vessels. In the present study, we evaluated the effects of diamond and graphite nanoparticles on the development of chicken embryos, as well as vascularization of the chorioallantoic membrane and heart at the morphological and molecular level. Nanoparticles did not affect either body/heart weight or serum indices of the embryos’ health. However, vascularization of the heart and the density of branched vessels were significantly reduced after treatment with diamond nanoparticles and, to a lesser extent, graphite nanoparticles. Application of nanoparticles significantly downregulated gene and protein expression of the proangiogenic basic fibroblast growth factor, indicating that both diamond and graphite nanoparticles inhibit angiogenesis. Keywords: diamond, graphite, nanoparticles, vasculogenesis, bFGF, VEGFWierzbicki MSawosz EGrodzik MHotowy APrasek MJaworski SSawosz FChwalibog ADove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 3427-3435 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Wierzbicki M Sawosz E Grodzik M Hotowy A Prasek M Jaworski S Sawosz F Chwalibog A Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
description |
Mateusz Wierzbicki,1 Ewa Sawosz,1 Marta Grodzik,1 Anna Hotowy,1 Marta Prasek,1 Slawomir Jaworski,1 Filip Sawosz,2 André Chwalibog2 1Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark Abstract: Carbon nanoparticles, with their high biocompatibility and low toxicity, have recently been considered for biomedical applications, including antiangiogenic therapy. Critical to normal development and tumor formation, angiogenesis is the process of forming capillary blood vessels from preexisting vessels. In the present study, we evaluated the effects of diamond and graphite nanoparticles on the development of chicken embryos, as well as vascularization of the chorioallantoic membrane and heart at the morphological and molecular level. Nanoparticles did not affect either body/heart weight or serum indices of the embryos’ health. However, vascularization of the heart and the density of branched vessels were significantly reduced after treatment with diamond nanoparticles and, to a lesser extent, graphite nanoparticles. Application of nanoparticles significantly downregulated gene and protein expression of the proangiogenic basic fibroblast growth factor, indicating that both diamond and graphite nanoparticles inhibit angiogenesis. Keywords: diamond, graphite, nanoparticles, vasculogenesis, bFGF, VEGF |
format |
article |
author |
Wierzbicki M Sawosz E Grodzik M Hotowy A Prasek M Jaworski S Sawosz F Chwalibog A |
author_facet |
Wierzbicki M Sawosz E Grodzik M Hotowy A Prasek M Jaworski S Sawosz F Chwalibog A |
author_sort |
Wierzbicki M |
title |
Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
title_short |
Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
title_full |
Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
title_fullStr |
Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
title_full_unstemmed |
Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
title_sort |
carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis |
publisher |
Dove Medical Press |
publishDate |
2013 |
url |
https://doaj.org/article/a69deeaaeb704702936894752e5325dd |
work_keys_str_mv |
AT wierzbickim carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT sawosze carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT grodzikm carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT hotowya carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT prasekm carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT jaworskis carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT sawoszf carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis AT chwaliboga carbonnanoparticlesdownregulateexpressionofbasicfibroblastgrowthfactorintheheartduringembryogenesis |
_version_ |
1718403820749324288 |