The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes.
<h4>Background</h4>The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6b4667155d740d1a4fdaef4c8d358a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a6b4667155d740d1a4fdaef4c8d358a4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a6b4667155d740d1a4fdaef4c8d358a42021-11-18T07:15:08ZThe RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes.1932-620310.1371/journal.pone.0039169https://doaj.org/article/a6b4667155d740d1a4fdaef4c8d358a42012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22723957/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in the process as well as whether other genes are involved needs to be elucidated.<h4>Methodology/principal findings</h4>In this study, the natural variation of the RTM genes was analysed at the amino acid level in relation with their functionality to restrict the long distance movement of Lettuce mosaic potyvirus (LMV). We identified non-functional RTM alleles in LMV-susceptible Arabidopsis accessions as well as some of the mutations leading to the non-functionality of the RTM proteins. Our data also indicate that more than 40% of the resistant accessions to LMV are controlled by the RTM genes. In addition, two new RTM loci were genetically identified.<h4>Conclusions/significance</h4>Our results show that the RTM resistance seems to be a complex biological process which would involves at least five different proteins. The next challenges will be to understand how the different RTM protein domains are involved in the resistance mechanism and to characterise the new RTM genes for a better understanding of the blocking of the long distance transport of plant viruses.Patrick CossonValérie Schurdi-LevraudQuang Hien LeOphélie SicardMélodie CaballeroFabrice RouxOlivier Le GallThierry CandresseFrédéric ReversPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 6, p e39169 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Patrick Cosson Valérie Schurdi-Levraud Quang Hien Le Ophélie Sicard Mélodie Caballero Fabrice Roux Olivier Le Gall Thierry Candresse Frédéric Revers The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. |
description |
<h4>Background</h4>The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in the process as well as whether other genes are involved needs to be elucidated.<h4>Methodology/principal findings</h4>In this study, the natural variation of the RTM genes was analysed at the amino acid level in relation with their functionality to restrict the long distance movement of Lettuce mosaic potyvirus (LMV). We identified non-functional RTM alleles in LMV-susceptible Arabidopsis accessions as well as some of the mutations leading to the non-functionality of the RTM proteins. Our data also indicate that more than 40% of the resistant accessions to LMV are controlled by the RTM genes. In addition, two new RTM loci were genetically identified.<h4>Conclusions/significance</h4>Our results show that the RTM resistance seems to be a complex biological process which would involves at least five different proteins. The next challenges will be to understand how the different RTM protein domains are involved in the resistance mechanism and to characterise the new RTM genes for a better understanding of the blocking of the long distance transport of plant viruses. |
format |
article |
author |
Patrick Cosson Valérie Schurdi-Levraud Quang Hien Le Ophélie Sicard Mélodie Caballero Fabrice Roux Olivier Le Gall Thierry Candresse Frédéric Revers |
author_facet |
Patrick Cosson Valérie Schurdi-Levraud Quang Hien Le Ophélie Sicard Mélodie Caballero Fabrice Roux Olivier Le Gall Thierry Candresse Frédéric Revers |
author_sort |
Patrick Cosson |
title |
The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. |
title_short |
The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. |
title_full |
The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. |
title_fullStr |
The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. |
title_full_unstemmed |
The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. |
title_sort |
rtm resistance to potyviruses in arabidopsis thaliana: natural variation of the rtm genes and evidence for the implication of additional genes. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/a6b4667155d740d1a4fdaef4c8d358a4 |
work_keys_str_mv |
AT patrickcosson thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT valerieschurdilevraud thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT quanghienle thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT opheliesicard thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT melodiecaballero thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT fabriceroux thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT olivierlegall thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT thierrycandresse thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT fredericrevers thertmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT patrickcosson rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT valerieschurdilevraud rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT quanghienle rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT opheliesicard rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT melodiecaballero rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT fabriceroux rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT olivierlegall rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT thierrycandresse rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes AT fredericrevers rtmresistancetopotyvirusesinarabidopsisthaliananaturalvariationofthertmgenesandevidencefortheimplicationofadditionalgenes |
_version_ |
1718423746386067456 |