A convergence proof for local mode filtering
In this paper, we present a convergence proof for an iterative procedure of local mode filtering. We formulate the local mode filtering as a quadratic optimization problem based on the Legendre transform of convex function, from which two closed-form expressions at each iteration step are derived fo...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6d33c738aac4c7593302bc89926981e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a6d33c738aac4c7593302bc89926981e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a6d33c738aac4c7593302bc89926981e2021-11-30T04:16:36ZA convergence proof for local mode filtering2405-959510.1016/j.icte.2021.02.008https://doaj.org/article/a6d33c738aac4c7593302bc89926981e2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2405959521000321https://doaj.org/toc/2405-9595In this paper, we present a convergence proof for an iterative procedure of local mode filtering. We formulate the local mode filtering as a quadratic optimization problem based on the Legendre transform of convex function, from which two closed-form expressions at each iteration step are derived for variables to be optimized. Those analytical solutions ensure that the value of objective function increases monotonically with the progress of the iterative procedure. We also show experimental results using a grayscale image, which support our theoretical results practically.Shuoyan ZhangKohei InoueKenji HaraElsevierarticleLocal mode filterLegendre transformConvex functionInformation technologyT58.5-58.64ENICT Express, Vol 7, Iss 4, Pp 445-448 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Local mode filter Legendre transform Convex function Information technology T58.5-58.64 |
spellingShingle |
Local mode filter Legendre transform Convex function Information technology T58.5-58.64 Shuoyan Zhang Kohei Inoue Kenji Hara A convergence proof for local mode filtering |
description |
In this paper, we present a convergence proof for an iterative procedure of local mode filtering. We formulate the local mode filtering as a quadratic optimization problem based on the Legendre transform of convex function, from which two closed-form expressions at each iteration step are derived for variables to be optimized. Those analytical solutions ensure that the value of objective function increases monotonically with the progress of the iterative procedure. We also show experimental results using a grayscale image, which support our theoretical results practically. |
format |
article |
author |
Shuoyan Zhang Kohei Inoue Kenji Hara |
author_facet |
Shuoyan Zhang Kohei Inoue Kenji Hara |
author_sort |
Shuoyan Zhang |
title |
A convergence proof for local mode filtering |
title_short |
A convergence proof for local mode filtering |
title_full |
A convergence proof for local mode filtering |
title_fullStr |
A convergence proof for local mode filtering |
title_full_unstemmed |
A convergence proof for local mode filtering |
title_sort |
convergence proof for local mode filtering |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/a6d33c738aac4c7593302bc89926981e |
work_keys_str_mv |
AT shuoyanzhang aconvergenceproofforlocalmodefiltering AT koheiinoue aconvergenceproofforlocalmodefiltering AT kenjihara aconvergenceproofforlocalmodefiltering AT shuoyanzhang convergenceproofforlocalmodefiltering AT koheiinoue convergenceproofforlocalmodefiltering AT kenjihara convergenceproofforlocalmodefiltering |
_version_ |
1718406824413102080 |