An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses.
Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6d83bff16384729b183bf81004b6578 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a6d83bff16384729b183bf81004b6578 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a6d83bff16384729b183bf81004b65782021-11-18T06:06:44ZAn interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses.1553-73661553-737410.1371/journal.ppat.1004052https://doaj.org/article/a6d83bff16384729b183bf81004b65782014-04-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24722315/pdf/?tool=EBIhttps://doaj.org/toc/1553-7366https://doaj.org/toc/1553-7374Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles.Hsin-Chieh MaYing LiuChunling WangMichael StraussNina RehageYing-Han ChenNihal Altan-BonnetJames HogleEckard WimmerSteffen MuellerAniko V PaulPing JiangPublic Library of Science (PLoS)articleImmunologic diseases. AllergyRC581-607Biology (General)QH301-705.5ENPLoS Pathogens, Vol 10, Iss 4, p e1004052 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 |
spellingShingle |
Immunologic diseases. Allergy RC581-607 Biology (General) QH301-705.5 Hsin-Chieh Ma Ying Liu Chunling Wang Michael Strauss Nina Rehage Ying-Han Chen Nihal Altan-Bonnet James Hogle Eckard Wimmer Steffen Mueller Aniko V Paul Ping Jiang An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. |
description |
Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles. |
format |
article |
author |
Hsin-Chieh Ma Ying Liu Chunling Wang Michael Strauss Nina Rehage Ying-Han Chen Nihal Altan-Bonnet James Hogle Eckard Wimmer Steffen Mueller Aniko V Paul Ping Jiang |
author_facet |
Hsin-Chieh Ma Ying Liu Chunling Wang Michael Strauss Nina Rehage Ying-Han Chen Nihal Altan-Bonnet James Hogle Eckard Wimmer Steffen Mueller Aniko V Paul Ping Jiang |
author_sort |
Hsin-Chieh Ma |
title |
An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. |
title_short |
An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. |
title_full |
An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. |
title_fullStr |
An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. |
title_full_unstemmed |
An interaction between glutathione and the capsid is required for the morphogenesis of C-cluster enteroviruses. |
title_sort |
interaction between glutathione and the capsid is required for the morphogenesis of c-cluster enteroviruses. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/a6d83bff16384729b183bf81004b6578 |
work_keys_str_mv |
AT hsinchiehma aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT yingliu aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT chunlingwang aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT michaelstrauss aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT ninarehage aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT yinghanchen aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT nihalaltanbonnet aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT jameshogle aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT eckardwimmer aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT steffenmueller aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT anikovpaul aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT pingjiang aninteractionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT hsinchiehma interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT yingliu interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT chunlingwang interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT michaelstrauss interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT ninarehage interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT yinghanchen interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT nihalaltanbonnet interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT jameshogle interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT eckardwimmer interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT steffenmueller interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT anikovpaul interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses AT pingjiang interactionbetweenglutathioneandthecapsidisrequiredforthemorphogenesisofcclusterenteroviruses |
_version_ |
1718424558921318400 |