Stopping criteria for ending autonomous, single detector radiological source searches.
While the localization of radiological sources has traditionally been handled with statistical algorithms, such a task can be augmented with advanced machine learning methodologies. The combination of deep and reinforcement learning has provided learning-based navigation to autonomous, single-detect...
Enregistré dans:
Auteurs principaux: | Gregory R Romanchek, Shiva Abbaszadeh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/a6db2a33b7f2426d8308ebbc9ccc1f70 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
In search of nano-materials with enhanced secondary electron emission for radiation detectors
par: Marian Cholewa, et autres
Publié: (2021) -
Individual and collective foraging in autonomous search agents with human intervention
par: Daniel S. Schloesser, et autres
Publié: (2021) -
Detector-device-independent quantum secret sharing with source flaws
par: Xiuqing Yang, et autres
Publié: (2018) -
REVIEW: Stop searching, start finding - a handy media research guide
par: Annie McKillop
Publié: (2004) -
Glottal stops do not constrain lexical access as do oral stops.
par: Holger Mitterer, et autres
Publié: (2021)