Stopping criteria for ending autonomous, single detector radiological source searches.
While the localization of radiological sources has traditionally been handled with statistical algorithms, such a task can be augmented with advanced machine learning methodologies. The combination of deep and reinforcement learning has provided learning-based navigation to autonomous, single-detect...
Guardado en:
Autores principales: | Gregory R Romanchek, Shiva Abbaszadeh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6db2a33b7f2426d8308ebbc9ccc1f70 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
In search of nano-materials with enhanced secondary electron emission for radiation detectors
por: Marian Cholewa, et al.
Publicado: (2021) -
Individual and collective foraging in autonomous search agents with human intervention
por: Daniel S. Schloesser, et al.
Publicado: (2021) -
Detector-device-independent quantum secret sharing with source flaws
por: Xiuqing Yang, et al.
Publicado: (2018) -
REVIEW: Stop searching, start finding - a handy media research guide
por: Annie McKillop
Publicado: (2004) -
Glottal stops do not constrain lexical access as do oral stops.
por: Holger Mitterer, et al.
Publicado: (2021)