iCOVID: interpretable deep learning framework for early recovery-time prediction of COVID-19 patients
Abstract Most prior studies focused on developing models for the severity or mortality prediction of COVID-19 patients. However, effective models for recovery-time prediction are still lacking. Here, we present a deep learning solution named iCOVID that can successfully predict the recovery-time of...
Guardado en:
Autores principales: | Jun Wang, Chen Liu, Jingwen Li, Cheng Yuan, Lichi Zhang, Cheng Jin, Jianwei Xu, Yaqi Wang, Yaofeng Wen, Hongbing Lu, Biao Li, Chang Chen, Xiangdong Li, Dinggang Shen, Dahong Qian, Jian Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6e6a3508738431586a63408365d0e7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis
por: Yongli Xu, et al.
Publicado: (2021) -
AI-based analysis of CT images for rapid triage of COVID-19 patients
por: Qinmei Xu, et al.
Publicado: (2021) -
Implications of Delayed Reopening in Controlling the COVID-19 Surge in Southern and West-Central USA
por: Raj Dandekar, et al.
Publicado: (2021) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
Deep COVID DeteCT: an international experience on COVID-19 lung detection and prognosis using chest CT
por: Edward H. Lee, et al.
Publicado: (2021)