Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe
Abstract Ultrasound is well suited for guiding many minimally invasive procedures, but its use is often precluded by the poor visibility of medical devices. When devices are not visible, they can damage critical structures, with life-threatening complications. Here, we developed the first ultrasound...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6f1d27338d14bf6b0f4c79826b1573a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a6f1d27338d14bf6b0f4c79826b1573a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a6f1d27338d14bf6b0f4c79826b1573a2021-12-02T12:31:50ZLooking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe10.1038/s41598-017-03886-42045-2322https://doaj.org/article/a6f1d27338d14bf6b0f4c79826b1573a2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03886-4https://doaj.org/toc/2045-2322Abstract Ultrasound is well suited for guiding many minimally invasive procedures, but its use is often precluded by the poor visibility of medical devices. When devices are not visible, they can damage critical structures, with life-threatening complications. Here, we developed the first ultrasound probe that comprises both focused and unfocused transducer elements to provide both 2D B-mode ultrasound imaging and 3D ultrasonic needle tracking. A fibre-optic hydrophone was integrated into a needle to receive Golay-coded transmissions from the probe and these data were processed to obtain tracking images of the needle tip. The measured tracking accuracy in water was better than 0.4 mm in all dimensions. To demonstrate the clinical potential of this system, insertions were performed into the spine and the uterine cavity, in swine and pregnant ovine models in vivo. In both models, the SNR ranged from 13 to 38 at depths of 22 to 38 mm, at out-of-plane distances of 1 to 15 mm, and at insertion angles of 33 to 42 degrees relative to the probe surface normal. This novel ultrasound imaging/tracking probe has strong potential to improve procedural outcomes by providing 3D needle tip locations that are co-registered to ultrasound images, while maintaining compatibility with current clinical workflow.Wenfeng XiaSimeon J. WestMalcolm C. FinlayJean-Martial MariSebastien OurselinAnna L. DavidAdrien E. DesjardinsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Wenfeng Xia Simeon J. West Malcolm C. Finlay Jean-Martial Mari Sebastien Ourselin Anna L. David Adrien E. Desjardins Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe |
description |
Abstract Ultrasound is well suited for guiding many minimally invasive procedures, but its use is often precluded by the poor visibility of medical devices. When devices are not visible, they can damage critical structures, with life-threatening complications. Here, we developed the first ultrasound probe that comprises both focused and unfocused transducer elements to provide both 2D B-mode ultrasound imaging and 3D ultrasonic needle tracking. A fibre-optic hydrophone was integrated into a needle to receive Golay-coded transmissions from the probe and these data were processed to obtain tracking images of the needle tip. The measured tracking accuracy in water was better than 0.4 mm in all dimensions. To demonstrate the clinical potential of this system, insertions were performed into the spine and the uterine cavity, in swine and pregnant ovine models in vivo. In both models, the SNR ranged from 13 to 38 at depths of 22 to 38 mm, at out-of-plane distances of 1 to 15 mm, and at insertion angles of 33 to 42 degrees relative to the probe surface normal. This novel ultrasound imaging/tracking probe has strong potential to improve procedural outcomes by providing 3D needle tip locations that are co-registered to ultrasound images, while maintaining compatibility with current clinical workflow. |
format |
article |
author |
Wenfeng Xia Simeon J. West Malcolm C. Finlay Jean-Martial Mari Sebastien Ourselin Anna L. David Adrien E. Desjardins |
author_facet |
Wenfeng Xia Simeon J. West Malcolm C. Finlay Jean-Martial Mari Sebastien Ourselin Anna L. David Adrien E. Desjardins |
author_sort |
Wenfeng Xia |
title |
Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe |
title_short |
Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe |
title_full |
Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe |
title_fullStr |
Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe |
title_full_unstemmed |
Looking beyond the imaging plane: 3D needle tracking with a linear array ultrasound probe |
title_sort |
looking beyond the imaging plane: 3d needle tracking with a linear array ultrasound probe |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/a6f1d27338d14bf6b0f4c79826b1573a |
work_keys_str_mv |
AT wenfengxia lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe AT simeonjwest lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe AT malcolmcfinlay lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe AT jeanmartialmari lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe AT sebastienourselin lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe AT annaldavid lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe AT adrienedesjardins lookingbeyondtheimagingplane3dneedletrackingwithalineararrayultrasoundprobe |
_version_ |
1718394297876742144 |