The Numerical Range of C*ψ Cφ and Cφ C*ψ
In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6f938265f49418380e8dd9339217f78 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a6f938265f49418380e8dd9339217f78 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a6f938265f49418380e8dd9339217f782021-12-05T14:10:45ZThe Numerical Range of C*ψ Cφ and Cφ C*ψ2299-328210.1515/conop-2020-0108https://doaj.org/article/a6f938265f49418380e8dd9339217f782021-03-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0108https://doaj.org/toc/2299-3282In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary polynomials of unit norm whose image under the quadratic form incrementally foliate the numerical range. In the case when a and b are small we show numerical range of both operators is equal to the numerical range of the operator restricted to a 3-dimensional subspace.Clifford JohnDabkowski MichaelWiggins AlanDe Gruyterarticlecomposition operatornumerical rangeinner functionweighted shift47b3347a1215a60MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 13-23 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
composition operator numerical range inner function weighted shift 47b33 47a12 15a60 Mathematics QA1-939 |
spellingShingle |
composition operator numerical range inner function weighted shift 47b33 47a12 15a60 Mathematics QA1-939 Clifford John Dabkowski Michael Wiggins Alan The Numerical Range of C*ψ Cφ and Cφ C*ψ |
description |
In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary polynomials of unit norm whose image under the quadratic form incrementally foliate the numerical range. In the case when a and b are small we show numerical range of both operators is equal to the numerical range of the operator restricted to a 3-dimensional subspace. |
format |
article |
author |
Clifford John Dabkowski Michael Wiggins Alan |
author_facet |
Clifford John Dabkowski Michael Wiggins Alan |
author_sort |
Clifford John |
title |
The Numerical Range of C*ψ Cφ and Cφ C*ψ |
title_short |
The Numerical Range of C*ψ Cφ and Cφ C*ψ |
title_full |
The Numerical Range of C*ψ Cφ and Cφ C*ψ |
title_fullStr |
The Numerical Range of C*ψ Cφ and Cφ C*ψ |
title_full_unstemmed |
The Numerical Range of C*ψ Cφ and Cφ C*ψ |
title_sort |
numerical range of c*ψ cφ and cφ c*ψ |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/a6f938265f49418380e8dd9339217f78 |
work_keys_str_mv |
AT cliffordjohn thenumericalrangeofcpscphandcphcps AT dabkowskimichael thenumericalrangeofcpscphandcphcps AT wigginsalan thenumericalrangeofcpscphandcphcps AT cliffordjohn numericalrangeofcpscphandcphcps AT dabkowskimichael numericalrangeofcpscphandcphcps AT wigginsalan numericalrangeofcpscphandcphcps |
_version_ |
1718371768016568320 |