The Numerical Range of C*ψ Cφ and Cφ C*ψ
In this paper we investigate the numerical range of C*bφm Caφn and Caφn C*bφm on the Hardy space where φ is an inner function fixing the origin and a and b are points in the open unit disc. In the case when |a| = |b| = 1 we characterize the numerical range of these operators by constructing lacunary...
Guardado en:
Autores principales: | Clifford John, Dabkowski Michael, Wiggins Alan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a6f938265f49418380e8dd9339217f78 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
por: Mesbah Nadia, et al.
Publicado: (2021) -
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
por: Messaoudene Hadia, et al.
Publicado: (2021) -
Range-kernel weak orthogonality of some elementary operators
por: Bachir Ahmed, et al.
Publicado: (2021) -
Range-Kernel orthogonality and elementary operators on certain Banach spaces
por: Bachir Ahmed, et al.
Publicado: (2021) -
Properties of multiplication operators on the space of functions of bounded φ-variation
por: Castillo René E., et al.
Publicado: (2021)