Computational method allowing Hydrogen-Deuterium Exchange Mass Spectrometry at single amide Resolution

Abstract Hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (HDXMS) is a rapid and effective method for localizing and determining protein stability and dynamics. Localization is routinely limited to a peptide resolution of 5 to 20 amino acid residues. HDXMS data can contain informatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chris Gessner, Wieland Steinchen, Sabrina Bédard, John J. Skinner, Virgil L. Woods, Thomas J. Walsh, Gert Bange, Dionysios P. Pantazatos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a71050ed12c6431e8c2981c692e1ae08
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Hydrogen-deuterium exchange (HDX) coupled with mass spectrometry (HDXMS) is a rapid and effective method for localizing and determining protein stability and dynamics. Localization is routinely limited to a peptide resolution of 5 to 20 amino acid residues. HDXMS data can contain information beyond that needed for defining protein stability at single amide resolution. Here we present a method for extracting this information from an HDX dataset to generate a HDXMS protein stability fingerprint. High resolution (HR)-HDXMS was applied to the analysis of a model protein of a spectrin tandem repeat that exemplified an intuitive stability profile based on the linkage of two triple helical repeats connected by a helical linker. The fingerprint recapitulated expected stability maximums and minimums with interesting structural features that corroborate proposed mechanisms of spectrin flexibility and elasticity. HR-HDXMS provides the unprecedented ability to accurately assess protein stability at the resolution of a single amino acid. The determination of HDX stability fingerprints may be broadly applicable in many applications for understanding protein structure and function as well as protein ligand interactions.