Physiological tolerance times while wearing explosive ordnance disposal protective clothing in simulated environmental extremes.

Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that inc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ian B Stewart, Kelly L Stewart, Charles J Worringham, Joseph T Costello
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/a71484c7ac4748f0b04e017c7908108c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Explosive ordnance disposal (EOD) technicians are required to wear protective clothing to protect themselves from the threat of overpressure, fragmentation, impact and heat. The engineering requirements to minimise these threats results in an extremely heavy and cumbersome clothing ensemble that increases the internal heat generation of the wearer, while the clothing's thermal properties reduce heat dissipation. This study aimed to evaluate the heat strain encountered wearing EOD protective clothing in simulated environmental extremes across a range of differing work intensities. Eight healthy males [age 25 ± 6 years (mean ± sd), height 180 ± 7 cm, body mass 79 ± 9 kg, VO2max 57 ± 6 ml(.) kg(-1.)min(-1)] undertook nine trials while wearing an EOD9 suit (weighing 33.4 kg). The trials involved walking on a treadmill at 2.5, 4 and 5.5 km ⋅ h(-1) at each of the following environmental conditions, 21, 30 and 37 °C wet bulb globe temperature (WBGT) in a randomised controlled crossover design. The trials were ceased if the participants' core temperature reached 39 °C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to fatigue/nausea. Tolerance times ranged from 10-60 minutes and were significantly reduced in the higher walking speeds and environmental conditions. In a total of 15 trials (21%) participants completed 60 minutes of walking; however, this was predominantly at the slower walking speeds in the 21 °C WBGT environment. Of the remaining 57 trials, 50 were ceased, due to attainment of 90% maximal heart rate. These near maximal heart rates resulted in moderate-high levels of physiological strain in all trials, despite core temperature only reaching 39 °C in one of the 72 trials.