Hierarchical information clustering by means of topologically embedded graphs.
We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and ana...
Guardado en:
Autores principales: | Won-Min Song, T Di Matteo, Tomaso Aste |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a720d768c28243c4980b470a8ac3213a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Leveraging graph-based hierarchical medical entity embedding for healthcare applications
por: Tong Wu, et al.
Publicado: (2021) -
Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
por: Alje van Dam, et al.
Publicado: (2021) -
Clinical and biological clusters of sepsis patients using hierarchical clustering.
por: Grégory Papin, et al.
Publicado: (2021) -
Deep hierarchical embedding for simultaneous modeling of GPCR proteins in a unified metric space
por: Taeheon Lee, et al.
Publicado: (2021) -
Knowledge Graph Embedding Technology: A Review
por: SHU Shitai, LI Song+, HAO Xiaohong, ZHANG Liping
Publicado: (2021)