Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains.
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7253888b2914466b0761002b36b7c01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a7253888b2914466b0761002b36b7c01 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a7253888b2914466b0761002b36b7c012021-12-02T11:39:38ZExploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design10.1038/s42003-021-01878-92399-3642https://doaj.org/article/a7253888b2914466b0761002b36b7c012021-03-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01878-9https://doaj.org/toc/2399-3642Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains.Keiichi InoueMasayuki KarasuyamaRyoko NakamuraMasae KonnoDaichi YamadaKentaro MannenTakashi NagataYu InatsuHiromu YawoKei YuraOded BéjàHideki KandoriIchiro TakeuchiNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Keiichi Inoue Masayuki Karasuyama Ryoko Nakamura Masae Konno Daichi Yamada Kentaro Mannen Takashi Nagata Yu Inatsu Hiromu Yawo Kei Yura Oded Béjà Hideki Kandori Ichiro Takeuchi Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design |
description |
Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains. |
format |
article |
author |
Keiichi Inoue Masayuki Karasuyama Ryoko Nakamura Masae Konno Daichi Yamada Kentaro Mannen Takashi Nagata Yu Inatsu Hiromu Yawo Kei Yura Oded Béjà Hideki Kandori Ichiro Takeuchi |
author_facet |
Keiichi Inoue Masayuki Karasuyama Ryoko Nakamura Masae Konno Daichi Yamada Kentaro Mannen Takashi Nagata Yu Inatsu Hiromu Yawo Kei Yura Oded Béjà Hideki Kandori Ichiro Takeuchi |
author_sort |
Keiichi Inoue |
title |
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design |
title_short |
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design |
title_full |
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design |
title_fullStr |
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design |
title_full_unstemmed |
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design |
title_sort |
exploration of natural red-shifted rhodopsins using a machine learning-based bayesian experimental design |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a7253888b2914466b0761002b36b7c01 |
work_keys_str_mv |
AT keiichiinoue explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT masayukikarasuyama explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT ryokonakamura explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT masaekonno explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT daichiyamada explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT kentaromannen explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT takashinagata explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT yuinatsu explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT hiromuyawo explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT keiyura explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT odedbeja explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT hidekikandori explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign AT ichirotakeuchi explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign |
_version_ |
1718395718279888896 |