Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design

Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains.

Guardado en:
Detalles Bibliográficos
Autores principales: Keiichi Inoue, Masayuki Karasuyama, Ryoko Nakamura, Masae Konno, Daichi Yamada, Kentaro Mannen, Takashi Nagata, Yu Inatsu, Hiromu Yawo, Kei Yura, Oded Béjà, Hideki Kandori, Ichiro Takeuchi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/a7253888b2914466b0761002b36b7c01
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a7253888b2914466b0761002b36b7c01
record_format dspace
spelling oai:doaj.org-article:a7253888b2914466b0761002b36b7c012021-12-02T11:39:38ZExploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design10.1038/s42003-021-01878-92399-3642https://doaj.org/article/a7253888b2914466b0761002b36b7c012021-03-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01878-9https://doaj.org/toc/2399-3642Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains.Keiichi InoueMasayuki KarasuyamaRyoko NakamuraMasae KonnoDaichi YamadaKentaro MannenTakashi NagataYu InatsuHiromu YawoKei YuraOded BéjàHideki KandoriIchiro TakeuchiNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Keiichi Inoue
Masayuki Karasuyama
Ryoko Nakamura
Masae Konno
Daichi Yamada
Kentaro Mannen
Takashi Nagata
Yu Inatsu
Hiromu Yawo
Kei Yura
Oded Béjà
Hideki Kandori
Ichiro Takeuchi
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
description Inoue, Takeuchi and colleagues propose a machine learning-based protocol to screen rhodopsins for their likelihood to be red-shifted. After experimental verification, their tool shows remarkable success at identifying rhodopsins that showed red-shift gains.
format article
author Keiichi Inoue
Masayuki Karasuyama
Ryoko Nakamura
Masae Konno
Daichi Yamada
Kentaro Mannen
Takashi Nagata
Yu Inatsu
Hiromu Yawo
Kei Yura
Oded Béjà
Hideki Kandori
Ichiro Takeuchi
author_facet Keiichi Inoue
Masayuki Karasuyama
Ryoko Nakamura
Masae Konno
Daichi Yamada
Kentaro Mannen
Takashi Nagata
Yu Inatsu
Hiromu Yawo
Kei Yura
Oded Béjà
Hideki Kandori
Ichiro Takeuchi
author_sort Keiichi Inoue
title Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
title_short Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
title_full Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
title_fullStr Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
title_full_unstemmed Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
title_sort exploration of natural red-shifted rhodopsins using a machine learning-based bayesian experimental design
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a7253888b2914466b0761002b36b7c01
work_keys_str_mv AT keiichiinoue explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT masayukikarasuyama explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT ryokonakamura explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT masaekonno explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT daichiyamada explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT kentaromannen explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT takashinagata explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT yuinatsu explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT hiromuyawo explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT keiyura explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT odedbeja explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT hidekikandori explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
AT ichirotakeuchi explorationofnaturalredshiftedrhodopsinsusingamachinelearningbasedbayesianexperimentaldesign
_version_ 1718395718279888896