Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product
Today, the ground segments of the Landsat and Sentinel missions provide a wealth of well-calibrated, characterized datasets which are already orthorectified and corrected for atmospheric effects. Initiatives such as the CEOS Analysis Ready Data (ARD) propose and ensure guidelines and requirements so...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a7279063e4034ee9903c490e9ad9a4a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a7279063e4034ee9903c490e9ad9a4a9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a7279063e4034ee9903c490e9ad9a4a92021-11-25T18:54:01ZAnalysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product10.3390/rs132245362072-4292https://doaj.org/article/a7279063e4034ee9903c490e9ad9a4a92021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/22/4536https://doaj.org/toc/2072-4292Today, the ground segments of the Landsat and Sentinel missions provide a wealth of well-calibrated, characterized datasets which are already orthorectified and corrected for atmospheric effects. Initiatives such as the CEOS Analysis Ready Data (ARD) propose and ensure guidelines and requirements so that such datasets can readily be used, and interoperability within and between missions is a given. With the increasing availability of data from operational and research-oriented spaceborne hyperspectral sensors such as EnMAP, DESIS and PRISMA, and in preparation for the upcoming global mapping missions CHIME and SBG, the provision of analysis ready hyperspectral data will also be of increasing interest. Within this article, the design of the EnMAP Level 2A Land product is illustrated, highlighting the necessary processing steps for CEOS Analysis Ready Data for Land (CARD4L) compliant data products. This includes an overview of the design of the metadata, quality layers and archiving workflows, the necessary processing chain (system correction, orthorectification and atmospheric correction), as well as the resulting challenges of this procedure. Thanks to this operational approach, the end user will be provided with ARD products including rich metadata and quality information, which can readily be integrated in analysis workflows, and combined with data from other sensors.Martin BachmannKevin AlonsoEmiliano CarmonaBirgit GeraschMartin HabermeyerStefanie HolzwarthHarald KrawczykMaximilian LangheinrichDavid MarshallMiguel PatoNicole PinnelRaquel de losReyesMathias SchneiderPeter SchwindTobias StorchMDPI AGarticleEnMAPimaging spectrometerhyperspectralmetadataanalysis ready dataARDScienceQENRemote Sensing, Vol 13, Iss 4536, p 4536 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
EnMAP imaging spectrometer hyperspectral metadata analysis ready data ARD Science Q |
spellingShingle |
EnMAP imaging spectrometer hyperspectral metadata analysis ready data ARD Science Q Martin Bachmann Kevin Alonso Emiliano Carmona Birgit Gerasch Martin Habermeyer Stefanie Holzwarth Harald Krawczyk Maximilian Langheinrich David Marshall Miguel Pato Nicole Pinnel Raquel de losReyes Mathias Schneider Peter Schwind Tobias Storch Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product |
description |
Today, the ground segments of the Landsat and Sentinel missions provide a wealth of well-calibrated, characterized datasets which are already orthorectified and corrected for atmospheric effects. Initiatives such as the CEOS Analysis Ready Data (ARD) propose and ensure guidelines and requirements so that such datasets can readily be used, and interoperability within and between missions is a given. With the increasing availability of data from operational and research-oriented spaceborne hyperspectral sensors such as EnMAP, DESIS and PRISMA, and in preparation for the upcoming global mapping missions CHIME and SBG, the provision of analysis ready hyperspectral data will also be of increasing interest. Within this article, the design of the EnMAP Level 2A Land product is illustrated, highlighting the necessary processing steps for CEOS Analysis Ready Data for Land (CARD4L) compliant data products. This includes an overview of the design of the metadata, quality layers and archiving workflows, the necessary processing chain (system correction, orthorectification and atmospheric correction), as well as the resulting challenges of this procedure. Thanks to this operational approach, the end user will be provided with ARD products including rich metadata and quality information, which can readily be integrated in analysis workflows, and combined with data from other sensors. |
format |
article |
author |
Martin Bachmann Kevin Alonso Emiliano Carmona Birgit Gerasch Martin Habermeyer Stefanie Holzwarth Harald Krawczyk Maximilian Langheinrich David Marshall Miguel Pato Nicole Pinnel Raquel de losReyes Mathias Schneider Peter Schwind Tobias Storch |
author_facet |
Martin Bachmann Kevin Alonso Emiliano Carmona Birgit Gerasch Martin Habermeyer Stefanie Holzwarth Harald Krawczyk Maximilian Langheinrich David Marshall Miguel Pato Nicole Pinnel Raquel de losReyes Mathias Schneider Peter Schwind Tobias Storch |
author_sort |
Martin Bachmann |
title |
Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product |
title_short |
Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product |
title_full |
Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product |
title_fullStr |
Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product |
title_full_unstemmed |
Analysis-Ready Data from Hyperspectral Sensors—The Design of the EnMAP CARD4L-SR Data Product |
title_sort |
analysis-ready data from hyperspectral sensors—the design of the enmap card4l-sr data product |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/a7279063e4034ee9903c490e9ad9a4a9 |
work_keys_str_mv |
AT martinbachmann analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT kevinalonso analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT emilianocarmona analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT birgitgerasch analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT martinhabermeyer analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT stefanieholzwarth analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT haraldkrawczyk analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT maximilianlangheinrich analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT davidmarshall analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT miguelpato analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT nicolepinnel analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT raqueldelosreyes analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT mathiasschneider analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT peterschwind analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct AT tobiasstorch analysisreadydatafromhyperspectralsensorsthedesignoftheenmapcard4lsrdataproduct |
_version_ |
1718410610210766848 |