Optimal marker gene selection for cell type discrimination in single cell analyses

The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that impleme...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bianca Dumitrascu, Soledad Villar, Dustin G. Mixon, Barbara E. Engelhardt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that implements this approach.