Optimal marker gene selection for cell type discrimination in single cell analyses
The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that impleme...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that implements this approach. |
---|