Optimal marker gene selection for cell type discrimination in single cell analyses
The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that impleme...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:a73a6f0b9b614243a59329f665ef0fa6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:a73a6f0b9b614243a59329f665ef0fa62021-12-02T10:54:04ZOptimal marker gene selection for cell type discrimination in single cell analyses10.1038/s41467-021-21453-42041-1723https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa62021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21453-4https://doaj.org/toc/2041-1723The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that implements this approach.Bianca DumitrascuSoledad VillarDustin G. MixonBarbara E. EngelhardtNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Bianca Dumitrascu Soledad Villar Dustin G. Mixon Barbara E. Engelhardt Optimal marker gene selection for cell type discrimination in single cell analyses |
description |
The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that implements this approach. |
format |
article |
author |
Bianca Dumitrascu Soledad Villar Dustin G. Mixon Barbara E. Engelhardt |
author_facet |
Bianca Dumitrascu Soledad Villar Dustin G. Mixon Barbara E. Engelhardt |
author_sort |
Bianca Dumitrascu |
title |
Optimal marker gene selection for cell type discrimination in single cell analyses |
title_short |
Optimal marker gene selection for cell type discrimination in single cell analyses |
title_full |
Optimal marker gene selection for cell type discrimination in single cell analyses |
title_fullStr |
Optimal marker gene selection for cell type discrimination in single cell analyses |
title_full_unstemmed |
Optimal marker gene selection for cell type discrimination in single cell analyses |
title_sort |
optimal marker gene selection for cell type discrimination in single cell analyses |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6 |
work_keys_str_mv |
AT biancadumitrascu optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses AT soledadvillar optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses AT dustingmixon optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses AT barbaraeengelhardt optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses |
_version_ |
1718396488505098240 |