Optimal marker gene selection for cell type discrimination in single cell analyses

The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that impleme...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bianca Dumitrascu, Soledad Villar, Dustin G. Mixon, Barbara E. Engelhardt
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:a73a6f0b9b614243a59329f665ef0fa6
record_format dspace
spelling oai:doaj.org-article:a73a6f0b9b614243a59329f665ef0fa62021-12-02T10:54:04ZOptimal marker gene selection for cell type discrimination in single cell analyses10.1038/s41467-021-21453-42041-1723https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa62021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21453-4https://doaj.org/toc/2041-1723The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that implements this approach.Bianca DumitrascuSoledad VillarDustin G. MixonBarbara E. EngelhardtNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Bianca Dumitrascu
Soledad Villar
Dustin G. Mixon
Barbara E. Engelhardt
Optimal marker gene selection for cell type discrimination in single cell analyses
description The selection of a small set of cellular labels to distinguish a subpopulation of cells from a complex mixture is an important task in cell biology. Here the authors propose a method for supervised genetic marker selection using linear programming and provides a Python package scGeneFit that implements this approach.
format article
author Bianca Dumitrascu
Soledad Villar
Dustin G. Mixon
Barbara E. Engelhardt
author_facet Bianca Dumitrascu
Soledad Villar
Dustin G. Mixon
Barbara E. Engelhardt
author_sort Bianca Dumitrascu
title Optimal marker gene selection for cell type discrimination in single cell analyses
title_short Optimal marker gene selection for cell type discrimination in single cell analyses
title_full Optimal marker gene selection for cell type discrimination in single cell analyses
title_fullStr Optimal marker gene selection for cell type discrimination in single cell analyses
title_full_unstemmed Optimal marker gene selection for cell type discrimination in single cell analyses
title_sort optimal marker gene selection for cell type discrimination in single cell analyses
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/a73a6f0b9b614243a59329f665ef0fa6
work_keys_str_mv AT biancadumitrascu optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses
AT soledadvillar optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses
AT dustingmixon optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses
AT barbaraeengelhardt optimalmarkergeneselectionforcelltypediscriminationinsinglecellanalyses
_version_ 1718396488505098240